Èç¹ûÊýÁÐ{an}Âú×㣺a1+a2+a3+¡­+an=0ÇÒ|a1|+|a2|+|a3|+¡­+|an|=1£¨n¡Ý3£¬n¡ÊN*£©£¬Ôò³ÆÊýÁÐ{an}Ϊn½×¡°¹é»¯ÊýÁС±£®
£¨1£©Èôij4½×¡°¹é»¯ÊýÁС±{an}ÊǵȱÈÊýÁУ¬Ð´³ö¸ÃÊýÁеĸ÷Ï
£¨2£©Èôij11½×¡°¹é»¯ÊýÁС±{an}ÊǵȲîÊýÁУ¬Çó¸ÃÊýÁеÄͨÏʽ£»
£¨3£©Èô{an}Ϊn½×¡°¹é»¯ÊýÁС±£¬ÇóÖ¤£ºa1+
1
2
a2+
1
3
a3+¡­+
1
n
an¡Ü
1
2
-
1
2n
£®
¿¼µã£ºµÈ±È¹ØÏµµÄÈ·¶¨,µÈ²î¹ØÏµµÄÈ·¶¨,ÊýÁеÄÇóºÍ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©Éè³ö4½×¡°¹é»¯ÊýÁС±{an}µÄÊ×ÏîºÍ¹«±È£¬ÓÉa1+a2+a3+a4=0Çó³ö¹«±È£¬ÔÙ½áºÏ|a1|+|a2|+|a3|+|a4|=1Çó³öÊ×ÏÔòÊýÁеĸ÷Ïî¿ÉÇó£»
£¨2£©Éè³öµÈ²îÊýÁеĹ«²î£¬½áºÏa1+a2+a3+¡­+a11=0¿ÉµÃa6=0£¬È»ºó·Ö¹«²î´óÓÚ0ºÍ¹«²îСÓÚ0Á½ÖÖÇé¿öÁÐʽÇóÊ×ÏîºÍ¹«²î£¬ÔòµÈ²îÊýÁеÄͨÏʽ¿ÉÇó£»
£¨3£©Óɹ黯ÊýÁж¨Òå¿ÉÖª{an}ÖÐËùÓÐÕýÊýÏîµÄºÍµÈÓÚ
1
2
£¬ËùÓиºÊýÏîµÄºÍµÈÓÚ-
1
2
£¬È»ºóÀûÓ÷ÅËõ·¨Ö¤Ã÷ÌâÖÐËù¸øµÄ²»µÈʽ£®
½â´ð£º £¨1£©½â£ºÉèa1£¬a2£¬a3£¬a4³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÏÔÈ»q¡Ù1£¬ÔòÓÉa1+a2+a3+a4=0£¬
µÃ
a1(1-q4)
1-q
=0
£¬½âµÃq=-1£®
ÓÉ|a1|+|a2|+|a3|+|a4|=1£¬µÃ4|a1|=1£¬½âµÃa1=¡À
1
4
£®
¡àÊýÁÐ
1
4
£¬-
1
4
£¬
1
4
£¬-
1
4
»ò-
1
4
£¬
1
4
£¬-
1
4
£¬
1
4
ΪËùÇóËĽס°¹é»¯ÊýÁС±£»
£¨2£©½â£ºÉèµÈ²îÊýÁÐa1£¬a2£¬a3£¬¡­£¬a11µÄ¹«²îΪd£¬
ÓÉa1+a2+a3+¡­+a11=0£¬µÃ£º
11a1+
11¡Á10d
2
=0
£¬
¡àa1+5d=0£¬¼´a6=0£¬
µ±d=0ʱ£¬Óë¹é»¯ÊýÁеÄÌõ¼þÏàì¶Ü£¬
µ±d£¾0ʱ£¬ÓÉa1+a2+¡­+a5=-
1
2
£¬a6=0
£¬µÃ£º
5a1+10d=-
1
2
a1+5d=0
£¬½âµÃd=
1
30
£¬a1=-
1
6
£¬
¡àan=-
1
6
+
n-1
30
=
n-6
30
(n¡ÊN*£¬n¡Ü11)
£®
µ±d£¼0ʱ£¬ÓÉa1+a2+¡­+a5=
1
2
£¬a6=0
£¬µÃ£º
5a1+10d=
1
2
a1+5d=0
£¬½âµÃd=-
1
30
£¬a1=
1
6
£¬
¡àan=
1
6
-
n-1
30
=-
n-6
30
£¨n¡ÊN*£¬n¡Ü11£©£®
¡àan=
n-6
30
d£¾0
-
n-6
30
d£¼0
£¨n¡ÊN*£¬n¡Ü11£©£»
£¨3£©Ö¤Ã÷£ºÓÉÒÑÖª¿ÉÖª£¬±ØÓÐai£¾0£¬Ò²±ØÓÐaj£¼0£¨i£¬j¡Ê{1£¬2£¬¡­£¬n£¬ÇÒi¡Ùj£©£®
Éèai1£¬ai2£¬¡­£¬aipΪÖîaiÖÐËùÓдóÓÚ0µÄÊý£¬aj1£¬aj2£¬¡­£¬ajmΪÖîaiÖÐËùÓÐСÓÚ0µÄÊý£®
ÓÉÒÑÖªµÃX=ai1+ai2+¡­+aip=
1
2
£¬Y=aj1+aj2+¡­+ajm=-
1
2
£®
¡àa1+
1
2
a2+¡­+
1
n
an
=
p
k=1
aik
ik
+
m
k=1
ajk
jk
¡Ü
p
k=1
aik+
1
n
m
k=1
ajk=
1
2
-
1
2n
£®
µãÆÀ£º±¾Ì⿼²éµÈ²î¹ØÏµºÍµÈ±È¹ØÏµµÄÈ·¶¨£¬¿¼²éÁ˵ȱÈÊýÁк͵ȲîÊýÁÐͨÏʽµÄÇ󷨣¬ÑµÁ·ÁË·ÅËõ·¨Ö¤Ã÷²»µÈʽ£¬½â´ð´ËÌâµÄ¹Ø¼üÊǶÔж¨Òå¡°¹é»¯ÊýÁС±µÄÀí½â£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ë«ÇúÏß2y2-x2=4µÄÐéÖ᳤ÊÇ£¨¡¡¡¡£©
A¡¢
2
B¡¢2
C¡¢2
2
D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
3
sin2x+2cos2x
£¨1£©Çóf£¨
4¦Ð
3
£©µÄÖµ£»
£¨2£©ÒÑÖªx¡Ê[0£¬
¦Ð
2
]£¬Çóº¯Êýf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©Âú×ãf£¨x+2£©=f£¨x£©£¬µ±-1£¼x¡Ü0ʱf£¨x£©=e-x£»µ±0£¼x¡Ü1ʱ£¬f£¨x£©=4x2-4x+1£®
£¨¢ñ£©Çóº¯Êýf£¨x£©ÔÚ£¨-1£¬1£©Éϵĵ¥µ÷Çø¼ä£»
£¨¢ò£©Èôg£¨x£©=f£¨x£©-kx£¨k£¾0£©£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬3]ÉϵÄÁãµã¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚ¡÷ABCÖУ¬|
AB
-
AC
|=3£¬|
BC
-
BA
|=5£¬|
CA
-
CB
|=7£®
£¨1£©ÇóCµÄ´óС£»
£¨2£©ÉèDΪABµÄÖе㣬ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=
5
3
£¬ÇÒÖ±Ïßy=x+
b
2
ÊÇÅ×ÎïÏßy2=4xµÄÒ»ÌõÇÐÏߣ®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©µãP£¨x0£¬y0£©ÎªÍÖÔ²ÉÏÒ»µã£¬Ö±Ïßl£º
x0x
9
+
y0y
4
=1£¬ÅжÏlÓëÍÖÔ²µÄλÖùØÏµ²¢¸ø³öÀíÓÉ£»
£¨3£©¹ýÍÖÔ²ÉÏÒ»µãP×÷ÍÖÔ²µÄÇÐÏß½»Ö±Ïßx=
9
5
5
ÓÚµãA£¬ÊÔÅжÏÏß¶ÎAPΪֱ¾¶µÄÔ²ÊÇ·ñºã¹ý¶¨µã£¬ÈôÊÇ£¬Çó³ö¶¨µã×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijµØÇøÍ³Ò»×éÖ¯A£¬BÁ½Ð£¾ÙÐÐÊýѧ¾ºÈü£¬¿¼ÊÔºó·Ö±ð´ÓA£¬BÁ½Ð£Ëæ»ú³éÈ¡100ÃûѧÉúµÄ³É¼¨½øÐÐͳ¼Æ£¬µÃµ½ÏÂÃæµÄ½á¹û£º
·ÖÊý¶Î[50£¬60£©[60£¬70£©[70£¬80£©[80£¬90£©[90£¬100£©
AУƵÊý82042228
BУƵÊý412423210
£¨¢ñ£©Èô¿¼ÊÔ·ÖÊý´óÓÚ»òµÈÓÚ80·ÖΪÓÅÐ㣬·Ö±ð¹À¼ÆA£¬BÁ½Ð£µÄÓÅÐãÂÊ£»
£¨¢ò£©ÒÑÖªBУÓÃÕâ´Î³É¼¨¶ÔѧÉú½øÐÐÁ¿»¯ÆÀ¹À£¬Ã¿Ò»¸öѧÉúµÄÁ¿»¯ÆÀ¹ÀµÃ·Öy£¬ÓëÆä¿¼ÊÔ·ÖÊýtµÄ¹ØÏµÎªy=
-2£¬t£¼60
2£¬60¡Üt£¼80
4£¬t¡Ý80
£¬ÇóBУһ¸öѧÉúÁ¿»¯ÆÀ¹À³É¼¨´óÓÚ0µÄ¸ÅÂʺ͸ÃУѧÉúµÄƽ¾ùÁ¿»¯ÆÀ¹À³É¼¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÇúÏߦ£Éϵĵ㵽µãF£¨0£¬1£©µÄ¾àÀë±ÈËüµ½Ö±Ïßy=-3µÄ¾àÀëС2£®
£¨¢ñ£©ÇóÇúÏߦ£µÄ·½³Ì£»
£¨¢ò£©ÇúÏߦ£ÔÚµãP´¦µÄÇÐÏßlÓëxÖá½»ÓÚµãA£®Ö±Ïßy=3·Ö±ðÓëÖ±Ïßl¼°yÖá½»ÓÚµãM£¬N£¬ÒÔMNΪֱ¾¶×÷Ô²C£¬¹ýµãA×÷Ô²CµÄÇÐÏߣ¬ÇеãΪB£¬ÊÔ̽¾¿£ºµ±µãPÔÚÇúÏߦ£ÉÏÔ˶¯£¨µãPÓëÔ­µã²»Öغϣ©Ê±£¬Ïß¶ÎABµÄ³¤¶ÈÊÇ·ñ·¢Éú±ä»¯£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µ±ÊµÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ
x¡Ý0
y¡Ýx
2x+y+k¡Ü0
£¨ÆäÖÐkΪ³£ÊýÇÒk£¼0£©Ê±£¬
y+1
x
µÄ×îСֵΪ
3
2
£¬ÔòʵÊýkµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸