精英家教网 > 高中数学 > 题目详情

【题目】在等比数列{an}中,an>0 (nN ),公比q(0,1)a1a5+2a3a5a2a8=25,又a3a5的等比中项为2.

(1) 求数列{an}的通项公式;

(2) ,数列{bn}的前n项和为Sn,当最大时,求n的值.

【答案】(1) 25n (2) 89

【解析】

(1)根据等比数列的性质可知a1a5=a32,a2a8=a52化简a1a5+2a3a5+a2a8=25得到a3+a5=5,又因为a3a5的等比中项为2,联立求得a3a5的值,求出公比和首项即可得到数列的通项公式;(2)把an代入到bn=中得到bn的通项公式,即可得到前n项和的通项sn;把sn代入得到,讨论求出各项和的最大值时n的取值

解 (1)∵a1a5+2a3a5a2a8=25,

a+2a3a5a=25,

an>0,∴a3a5=5.

a3a5的等比中项为2,

a3a5=4,而q∈(0,1),

a3>a5,∴a3=4,a5=1.

qa1=16,∴an=16×n-1=25-n.

(2)bn=log2an=5-n

bn+1bn=-1,

∴{bn}是以b1=4为首项,-1为公差的等差数列,

Sn

∴当n≤8时, >0;

n=9时,=0;

n>9时, <0.

n=89时,+…+最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求不等式的解集;

(2)若不等式对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子商务公司随机抽取1000名网购者进行调查.这1000名购物者2018年网购金额(单位:万元)均在区间内,样本分组为:,购物金额的频率分布直方图如下:

电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:

购物金额分组

发放金额

50

100

150

200

1)求这1000名购物者获得优惠券金额的平均数;

2)以这1000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到频数分布表和频率分布直方图如下.

组号

分组

频数

1

[0,2)

6

2

[2,4)

8

3

[4,6)

17

4

[6,8)

22

5

[8,10)

25

6

[10,12)

12

7

[12,14)

6

8

[14,16)

2

9

[16,18)

2

合计

100

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;

(2)求频率分布直方图中的ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数(0, 2π)内有两个不同零点

(1)求实数的取值范围

(2)的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,曲线任一点为,求点直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中,为自然对数的底数).

(1)讨论函数的单调性;

(2)若分别是的极大值点和极小值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

同步练习册答案