精英家教网 > 高中数学 > 题目详情

【题目】已知函数,(其中,为自然对数的底数).

(1)讨论函数的单调性;

(2)若分别是的极大值点和极小值点,且,求证:.

【答案】(1)见解析;(2)证明见解析

【解析】

(1)讨论三种情况,分别计算得到答案.

(2)根据题意知等价于,设

,计算得到使,计算得到

得到证明.

(1)当时,

的单调递增区间是,单调递减区间是

时,

时,由解得;由解得的单调递增区间是,单调递减区间是

时,由解得;由解得的单调递增区间是,单调递减区间是

综上所述:

时,单调递增区间是,单调递减区间是

时,单调递增区间是,单调递减区间是

时,单调递增区间是,单调递减区间是

(2)由已知和(1)得,当时满足题意,此时

,则.

恒成立,

上单调递增,

使,即

从而当时, 单调递减,当时, 单调递增,

上单调递减

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,an>0 (nN ),公比q(0,1)a1a5+2a3a5a2a8=25,又a3a5的等比中项为2.

(1) 求数列{an}的通项公式;

(2) ,数列{bn}的前n项和为Sn,当最大时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.

(1)求数列{an}的通项公式与前n项和Sn

(2)设Tn为数列{}的前n项和,问是否存在常数m,使Tn=m[],若存在,求m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AH是边BC上的高,点G是△ABC的重心,若△ABC的面积为,AC=,tanC=2,则_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.两条相交直线在同一平面内的射影必为相交直线

B.不共线三点到平面的距离相等,则这三点确定的平面不一定与平面平行

C.对确定的两异面直线,过空间任一点有且只有一个平面与两异面直线都平行

D.两个相交平面的交线是一条线段

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形

(1)求椭圆C的方程

(2)假设直线l与椭圆C交于A,B两点①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆CN,并且OB的长②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有两家乒乓球俱乐部,两家的设备和服务都很好,但收费标准不同,俱乐部每张球台每小时5元,俱乐部按月收费,一个月中以内(含)每张球台90元,超过的部分每张球台每小时加收2元.某学校准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于,也不超过

1)设在俱乐部租一-张球台开展活动的收费为,在俱乐部租一张球台开展活动的收费为,试求的解析式;

2)问选择哪家俱乐部比较合算?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想

甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取

同学乙猜:刘云被清华大学录取,张熙被北京大学录取

同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取

同学丁猜:刘云被清华大学录取,张熙被武汉大学录取

结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对

那么曾玉、刘云、李梦、张熙四人被录取的大小可能是(

A.北京大学、清华大学、复旦大学、武汉大学

B.武汉大学、清华大学、复旦大学、北京大学

C.清华大学、北京大学、武汉大学 、复旦大学

D.武汉大学、复旦大学、清华大学、北京大学

查看答案和解析>>

同步练习册答案