精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x(x-a)2,g(x)=-x2+(a-1)x+a(其中a为常数).
(1)如果函数y=f(x)和y=g(x)有相同的极值点,求a的值;
(2)若方程f(x)=1恰有3个不同的根,求实数a的取值范围;
(3)设a>0,问是否存在数学公式,使得f(x0)>g(x0),若存在,请求出实数a的取值范围;若不存在,请说明理由.

解:(1)f(x)=x(x-a)2=x3-2ax2+a2x,则f'(x)=3x2-4ax+a2=(3x-a)(x-a),
令f'(x)=0,得x=a或,而g(x)在x=处有极大值,
=a或=
∴a=-1或a=3;
(2)根据题意,方程f(x)-1=0恰有3个不同的根
1°当即a<0时,f(x)在x=a处取得极大值,而f(a)=0,不符合题意,舍去;
2°当即a=0时,不符合题意,舍去;
3°当即a>0时,f(x)在x=处取得极大值,f()>1,
∴a>
(3)假设存在,即存在,使得f(x)-g(x)=x(x-a)2-[-x2+(a-1)x+a]=x(x-a)2+(x-a)(x+1)=(x-a)[x2+(1-a)x+1]>0,
时,又a>0,故x-a<0,
则存在,使得x2+(1-a)x+1<0,
1°当 即a>3时,(2+(1-a)×+1<0得a>3或a<-,∴a>3;
2°当-1≤,即0<a≤3时,<0得a<-1或a>3,∴a无解;
综上:a>3.
分析:(1)对函数f(x)求导,由f'(x)=0,可得=a或,而g(x)在x=处有极大值,故可建立方程,即可求得结论;
(2)根据题意,方程f(x)-1=0恰有3个不同的根,比较极值点的大小,即可得到结论;
(3)假设存在,存在,使得使得f(x)-g(x)>0,由及a>0,可得x-a<0,从而使得x2+(1-a)x+1<0,结合二次函数的性质求解
点评:本题主要考查了导数在求解极值中的应用,解得本题不但要熟练掌握函数的导数的相关的知识,还要具备一定的逻辑推理的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案