| A. | 0 | B. | -1 | C. | 1 | D. | 2 |
分析 把已知等式两边求导,得到f′(x)=6x+2,可得f(x)=3x2+2x+c,代回原等式求得c值,求得f(x),则其导数可求.
解答 解:对f(x)=3x2+2x-${∫}_{0}^{1}$f(x)dx两边求导,得
f′(x)=6x+2,∴f(x)=3x2+2x+c,
则3x2+2x+c=3x2+2x-${∫}_{0}^{1}$(3x2+2x+c)dx
=$3{x}^{2}+2x-({x}^{3}+{x}^{2}+cx){|}_{0}^{1}$=3x2+2x-2-c,
∴c=-2-c,得c=-1.
∴f(x)=3x2+2x-1,
则${∫}_{0}^{1}$f(x)dx=${∫}_{0}^{1}$(3x2+2x-1)dx=$({x}^{3}+{x}^{2}-x){|}_{0}^{1}=1$.
故选;C.
点评 本题考查定积分,由已知求出f(x)是解答该题的关键,注意等式中的${∫}_{0}^{1}$f(x)dx是常数,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com