精英家教网 > 高中数学 > 题目详情
设函数f(x)=log4(4x+1)+ax(a∈R)
(Ⅰ)若函数f(x)是定义在R上的偶函数,求a的值;
(Ⅱ)若不等式f(x)+f(-x)≥mt+m对任意x∈R,t∈[-2,1]恒成立,求实数m的取值范围.
(Ⅰ)由函数f(x)是定义在R上的偶函数,得f(x)=f(-x)恒成立,
log4(4x+1)+ax=log4(4-x+1)-ax
2ax=log4
4-x+1
4x+1
=log4
1
4x
=-x

∴(2a+1)x=0恒成立,则2a+1=0,故a=-
1
2

(Ⅱ)f(x)+f(-x)=log4(4x+1)+ax+log4(4-x+1)-ax=log4(4x+1)+log4(4-x+1)
=log4(4x+1)(4-x+1)=log4(2+4x+4-x)≥log4(2+2
4x×4-x
)=1

当且仅当x=0时取等号,
∴mt+m≤1对任意t∈[-2,1]恒成立,
令h(t)=mt+m,
h(-2)=-2m+m≤1
h(1)=m+m≤1
,解得-1≤m≤
1
2

故实数m的取值范围是[-1,
1
2
]
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量吨收取的污水处理费元,运行程序如下所示:请写出y与m的函数关系,并求排放污水150吨的污水处理费用.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数,函数f(x)=x2+|x-a|+1,x∈R
(1)讨论f(x)的奇偶性;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的奇函数满足f(x+2)=-f(x),当0<x<1时,f(x)=x,f(
15
2
)
=(  )
A.
1
2
B.-
1
2
C.
15
2
D.-
15
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=(1-m)x2-2mx-5是偶函数,则f(x)在R上(  )
A.先减后增B.先增后减C.单调递增D.单调递减

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=2sinπx与函数g(x)=
3x-1
的图象所有交点的橫坐标之和为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,且,则___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知
,则的最大值等于     

查看答案和解析>>

同步练习册答案