精英家教网 > 高中数学 > 题目详情

已知R上的不间断函数 满足:①当时,恒成立;②对任意的都有。又函数 满足:对任意的,都有成立,当时,。若关于的不等式恒成立,则的取值范围(   )

A.     B.        C.       D.

 

【答案】

A

【解析】

试题分析:因为,当时,恒成立,所以,函数在区间(0,+∞)是增函数;又对任意的都有。所以,是偶函数,且有g|(x|)=g(x)。而函数 满足:对任意的,都有成立,所有函数是周期函数,周期为。所以g[f(x)]≤g(a2-a+2)在R上恒成立,

∴|f(x)|≤|a2-a+2|对x∈[--2-2]恒成立,

只要使得定义域内|f(x)|max≤|a2-a+2|min

由于当x∈[-]时,f(x)=x3-3x,

所以,f′(x)=3x2-3=3(x+1)(x-1),

该函数过点(-,0),(0,0),(,0),

且函数在x=-1处取得极大值f(-1)=2,

在x=1处取得极小值f(1)=-2,

又函数是周期函数,周期为

所以函数f(x)在x∈[--2-2]的最大值为2,所以,令2≤|a2-a+2|解得:a≥1或a≤0.

选A.考点:利用导数研究函数的单调性、最值,函数的奇偶性、周期性,函数不等式。

点评:中档题,解函数不等式,往往需要将不等式具体化或利用函数的图象,结合函数的单调性。总之,要通过充分认识函数的特征,探寻解题的途径。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知R上的不间断函数g(x)满足:①当x>0时,g′(x)>0恒成立;②对任意的x∈R都有g(x)=g(-x).又函数f(x)满足:对任意的x∈R,都有f(
3
+x)=-f(x)
成立,当x∈[0,
3
]
时,f(x)=x3-3x.若关于x的不等式g[f(x)]≤g(a2-a+2)对x∈[-3,3]恒成立,则a的取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知R上的不间断函数g(x)满足:①当x>0时,g'(x)>0恒成立;②对任意的x∈R都有g(x)=g(-x).又函数f(x)满足:对任意的x∈R,都有f(
3
+x)=-f(x)
成立,当x∈[0,
3
]
时,f(x)=x3-3x.若关于x的不等式g[f(x)]≤g(a2-a+2)对x∈[-3,3]恒成立,则a的取值范围
a≥1或a≤0.
a≥1或a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知R上的不间断函数 满足:①当时,恒成立;②对任意的都有.又函数 满足:对任意的,都有成立,当时,.若关于的不等式恒成立,则的取值范围_______________.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济宁市高三上学期期末模拟文科数学试卷(解析版) 题型:选择题

已知R上的不间断函数 满足:①当时,恒成立;②对任意的都有。又函数 满足:对任意的,都有成立,当时,。若关于的不等式恒成立,则的取值范围(   )

A.     B.        C.       D.

 

查看答案和解析>>

科目:高中数学 来源:2013届湖北长阳自治县第一中学高二下学期期中理科数学试卷(解析版) 题型:选择题

已知R上的不间断函数 满足:①当时,恒成立;②对任意的都有。又函数满足:对任意的,都有成立,当时, 。若关于的不等式恒成立,则的取值范围(   )

A.        B.        C.        D.

 

查看答案和解析>>

同步练习册答案