精英家教网 > 高中数学 > 题目详情
(2011•广东模拟)已知函数f(x)=
a-x
+
x
(a∈N*),对定义域内任意x1,x2,满足|f(x1)-f(x2)|<1,则正整数a的取值个数是
5
5
分析:对定义域内任意x1,x2,满足|f(x1)-f(x2)|<1,即表明f(x)的最大值与最小值的差小于1.(也就是值域区间的长度小于1),求其最大最小值即可.
解答:解:∵a-x≥0,x≥0,∴0≤x≤a,∴定义域为[0,a]
对定义域内任意x1,x2,满足|f(x1)-f(x2)|<1,即表明f(x)的最大值与最小值的差小于1.(也就是值域区间的长度小于1),求其最大最小值即可
∵f(x)=
a-x
+
x
≥0
∴[f(x)]2=a+2
x(a-x)
≥a,当x=0或a时,f(x)取最小值
a

又x(a-x)≤[
x+(a-x)
2
]2=
a2
4
,当x=a-x即x=
a
2
时取等号
即[f(x)]2≤a+a=2a,f(x)≤
2a
,当x=
a
2
时取最大值
2a

∴(
2
-1)
a
<1
a
1
2
-1
=1+
2

∴a<3+2
2

∵a∈N*
∴a=1、2、3、4、5
∴正整数a的取值个数是5个.
故答案为:5
点评:本题考查恒成立问题,考查函数的最值,解题的关键是转化为值域区间的长度小于1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)给定函数f(x)=
x2
2(x-1)

(1)试求函数f(x)的单调减区间;
(2)已知各项均为负的数列{an}满足,4Sn•f(
1
an
)=1
,求证:-
1
an+1
ln
n+1
n
<-
1
an

(3)设bn=-
1
an
,Tn为数列 {bn} 的前n项和,求证:T2012-1<ln2012<T2011

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知集合M={y|y=x2-1,x∈R},N={x|y=
2-x2
}
,则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知命题“?x∈R,x2+2ax+1<0”是真命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知线段AB的两个端点分别为A(0,1),B(1,0),P(x,y)为线段AB上不与端点重合的一个动点,则(x+
1
x
)(y+
1
y
)
的最小值为
25
4
25
4

查看答案和解析>>

同步练习册答案