ij԰ÒÕʦÅàÓýÁËÁ½ÖÖÕäÏ¡Ê÷ÃçAÓëB£¬ÖêÊý·Ö±ðΪ8Óë12£¬ÏÖ½«Õâ20ÖêÊ÷ÃçµÄ¸ß¶È±àд³ÉÈçͼËùʾ¾¥Ò¶Í¼£¨µ¥Î»£ºcm£©£®ÈôÊ÷¸ßÔÚ175cmÒÔÉÏ£¨°üÀ¨175cm£©¶¨ÒåΪ¡°Éú³¤Á¼ºÃ¡±£¬Ê÷¸ßÔÚ175cmÒÔÏ£¨²»°üÀ¨175cm£©¶¨ÒåΪ¡°·ÇÉú³¤Á¼ºÃ¡±£¬ÇÒÖ»ÓС°BÉú³¤Á¼ºÃ¡±µÄ²Å¿ÉÒÔ³öÊÛ£®
£¨1£©¶ÔÓÚÕâ20ÖêÊ÷Ã磬Èç¹ûÓ÷ֲã³éÑùµÄ·½·¨´Ó¡°Éú³¤Á¼ºÃ¡±ºÍ¡°·ÇÉú³¤Á¼ºÃ¡±Öй²³éÈ¡5Ö꣬ÔÙ´ÓÕâ5ÖêÖÐÈÎÑ¡2Ö꣬ÄÇôÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄ¸ÅÂÊÊǶàÉÙ£¿
£¨2£©Èô´ÓËùÓС°Éú³¤Á¼ºÃ¡±ÖÐÑ¡2Ö꣬ÇóËùÑ¡ÖеÄÊ÷Ãç¶¼ÄܳöÊ۵ĸÅÂÊ£®
¿¼µã£º¹Åµä¸ÅÐͼ°Æä¸ÅÂʼÆË㹫ʽ,·Ö²ã³éÑù·½·¨
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©¸ù¾Ý¾¥Ò¶Í¼£¬¿ÉÖª¡°Éú³¤Á¼ºÃ¡±ÓÐ8Ö꣬¡°·ÇÉú³¤Á¼ºÃ¡±µÄÓÐ12Ö꣬Ó÷ֲã³éÑùµÄ·½·¨£¬Çó³ö¡°Éú³¤Á¼ºÃ¡±ºÍ¡°·ÇÉú³¤Á¼ºÃ¡±µÄÖêÊý£¬ÀûÓöÔÁ¢Ê¼þµÄ¸ÅÂÊ£¬¼´¿ÉÇó³öÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄ¸ÅÂÊ£»
£¨2£©¸ù¾Ý×éºÏÊý¹«Ê½Ò׵ôÓËùÓС°Éú³¤Á¼ºÃ¡±ÖÐÑ¡2ÖêµÄʼþ¹²28¸ö£¬ÆäÖÐÊ÷Ãç¶¼ÄܳöÊ۵Ļù±¾Ê¼þÓÐ3¸ö£¬¸ù¾Ý¸ÅÂʹ«Ê½¼ÆËã¼´¿É£®
½â´ð£º ½â£º£¨1£©¸ù¾Ý¾¥Ò¶Í¼£¬¿ÉÖª¡°Éú³¤Á¼ºÃ¡±ÓÐ8Ö꣬¡°·ÇÉú³¤Á¼ºÃ¡±µÄÓÐ12Ö꣬
Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡£¬Ã¿Öê±»³éÈ¡µÄ¸ÅÂÊÊÇ
5
20
=
1
4
£¬
´Ó¡°Éú³¤Á¼ºÃ¡±Öй²³éÈ¡8¡Á
1
4
=2
Ö꣬
¡°·ÇÉú³¤Á¼ºÃ¡±µÄÓÐ12¡Á
1
4
=3
Ö꣮
Éè¡°Éú³¤Á¼ºÃ¡±µÄÁ½ÖêΪ1£¬2£®¡°·ÇÉú³¤Á¼ºÃ¡±µÄ3ÖêΪa£¬b£¬c£®
ÔòËùÓеĻù±¾Ê¼þÓУº
£¨1£¬2£©£¬£¨1£¬a£©£¬£¨1£¬b£©£¬£¨1£¬c£©£¬
£¨2£¬a£©£¬£¨2£¬b£©£¬£¨2£¬c£©£¬
£¨a£¬b£©£¬£¨a£¬c£©£¬
£¨b£¬c£©¹²ÓÐ10ÖÖ£¬
ÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄʼþÓÐ7¸ö
¡àÖÁÉÙÓÐÒ»Öê¡°Éú³¤Á¼ºÃ¡±µÄ¸ÅÂÊÊÇP=
7
10
£®
£¨2£©ÒÀÌâÒ⣬һ¹²ÓÐ8ÖêÉú³¤Á¼ºÃ£¬ÆäÖÐAÓÐ5Ö꣬BÓÐ3Ö꣬
ËùÓпÉÄܵĻù±¾Ê¼þ¹²ÓÐ
C
2
8
=
8¡Á7
2¡Á1
=28
¸ö£¬
Ê÷Ãç¶¼ÄܳöÊÛµÄʼþ°üº¬µÄ»ù±¾Ê¼þΪ
C
2
3
=3
¸ö£¬
¡àËùÇó¸ÅÂÊΪP=
3
28
£®
µãÆÀ£º±¾Ì⿼²éÁ˾¥Ò¶Í¼¼°Óɾ¥Ò¶Í¼ÇóÊý¾ÝµÄ·ÖÎö£¬¿¼²éÁ˹ŵä¸ÅÐ͵ĸÅÂʼÆË㣬½â´ð±¾ÌâµÄ¹Ø¼üÊǶÁ¶®¾¥Ò¶Í¼£®ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãP£¨x£¬y£©Âú×ãÔ¼ÊøÌõ¼þ
x+y¡Ý1
x-y¡Ý-1
2x-y¡Ü2
£¬OÎª×ø±êÔ­µã£¬Ôò|OP|µÄ×î´óֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸øŒçËĸöÃüÌ⣺
£¨1£©ÈôÒ»¸ö½ÇµÄÁ½±ß·Ö±ðƽÐÐÓÚÁíÒ»¸ö½ÇµÄÁ½±ß£¬ÔòÕâÁ½¸ö½ÇÏàµÈ£»
£¨2£©¦Á£¬¦Â ÎªÁ½¸ö²»Í¬Æ½Ã棬ֱÏßa?¦Á£¬Ö±Ïßb?¦Á£¬ÇÒa¡Î¦Â£¬b¡Î¦Â£¬Ôò¦Á¡Î¦Â£»
£¨3£©¦Á£¬¦Â ÎªÁ½¸ö²»Í¬Æ½Ã棬ֱÏßm¡Í¦Á£¬m¡Í¦Â  Ôò¦Á¡Î¦Â£»
£¨4£©¦Á£¬¦Â ÎªÁ½¸ö²»Í¬Æ½Ã棬ֱÏßm¡Î¦Á£¬m¡Î¦Â£¬Ôò¦Á¡Î¦Â£®
ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢£¨1£©B¡¢£¨2£©
C¡¢£¨3£©D¡¢£¨4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa£¾0£¬b£¾0£¬c£¾0ÏÂÁв»µÈ¹ØÏµ²»ºã³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A¡¢c3+c+1£¾c2+
1
4
c-1
B¡¢|a-b|¡Ü|a-c|+|b-c|
C¡¢Èôa+4b=1£¬Ôò
1
a
+
1
b
£¾6.8
D¡¢ax2+bx+c¡Ý0£¨x¡ÊR£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬a2=
1
4
£¬ÇÒan+1=
(n-1)an
n-an
£¨n=2£¬3£¬4£¬¡­£©£®SnΪÊýÁÐ{bn}µÄǰnÏîºÍ£¬ÇÒ
4Sn=bnbn+1£¬b1=2£¨n=1£¬2£¬3£¬¡­£©£®
£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Éècn=bn2
1
3an
+
2
3
£¬ÇóÊýÁÐ{cn}µÄǰnÏîµÄºÍPn£»
£¨3£©Ö¤Ã÷¶ÔÒ»ÇÐn¡ÊN*£¬ÓÐ
n
k=1
ak2£¼
7
6
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼×¡¢ÒÒ¡¢±ûÈýÈËÖÐҪѡһÈËÈ¥²Î¼Ó³ª¸è±ÈÈü£¬ÓÚÊÇËûÃÇÖÆ¶¨ÁËÒ»¸ö¹æÔò£¬¹æÔòΪ£º£¨Èçͼ£©ÒÔOΪÆðµã£¬ÔÙ´ÓA1£¬A2£¬A3£¬A4£¬A5£¬Õâ5¸öµãÖÐÈÎÈ¡Á½µã·Ö±ðΪÖÕµãµÃµ½Á½¸öÏòÁ¿£¬¼ÇÕâÁ½¸öÏòÁ¿µÄÊýÁ¿»ýΪX£¬ÈôX£¾0¾ÍÈü×È¥£»ÈôX=0¾ÍÈÃÒÒÈ¥£»ÈôX£¼0¾ÍÊDZûÈ¥£®
£¨¢ñ£©Ð´³öÊýÁ¿»ýXµÄËùÓпÉÄÜȡֵ£»
£¨¢ò£©Çó¼×¡¢ÒÒ¡¢±ûÈýÈËÈ¥²Î¼Ó±ÈÈüµÄ¸ÅÂÊ£¬²¢ÓÉÇó³öµÄ¸ÅÂÊÀ´ËµÃ÷Õâ¸ö¹æÔò¹«Æ½Âð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
m
=£¨2cos2x£¬
3
£©£¬
n
=£¨1£¬sin2x£©º¯Êýf£¨x£©=
m
n

£¨1£©Çóº¯Êýf£¨x£©µÄ¶Ô³ÆÖÐÐÄ£» 
£¨2£©ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒf£¨C£©=3£¬c=1£¬ÇÒa£¾b£¾c£¬Çó
3
a-bµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=
3
4
£¬an+1=
1
2-an
£¨n¡ÊN*£©£®
£¨¢ñ£©ÇóÖ¤£ºÊýÁÐ{
1
an-1
}ÊǵȲîÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn+an=l£¨n¡ÊN*£©£¬Sn=b1b2+b2b3+¡­+bnbn+1£¬ÊԱȽÏanÓë8SnµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ£¨
1
x
-x2£©6µÄÕ¹¿ªÊ½ÖУ¬x3µÄϵÊýÊÇ
 
£¨ÓÃÊý×Ö×÷´ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸