精英家教网 > 高中数学 > 题目详情
在(
1
x
-x26的展开式中,x3的系数是
 
(用数字作答).
考点:二项式系数的性质
专题:二项式定理
分析:先求出二项式展开式的通项公式,再令x的幂指数等于3,求得r的值,即可求得展开式的x3项的系数.
解答: 解:二项式(
1
x
-x26=(x2-
1
x
6展开式的通项公式为Tr+1=
C
r
6
•x12-2r•(-1)r•x-r=(-1)r 
C
r
6
•x12-3r
令12-3r=3,解得r=3,故二项式(x2-
1
x
6展开式中的x3项的系数为-1×20=-20,
故答案为:-20.
点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某园艺师培育了两种珍稀树苗A与B,株数分别为8与12,现将这20株树苗的高度编写成如图所示茎叶图(单位:cm).若树高在175cm以上(包括175cm)定义为“生长良好”,树高在175cm以下(不包括175cm)定义为“非生长良好”,且只有“B生长良好”的才可以出售.
(1)对于这20株树苗,如果用分层抽样的方法从“生长良好”和“非生长良好”中共抽取5株,再从这5株中任选2株,那么至少有一株“生长良好”的概率是多少?
(2)若从所有“生长良好”中选2株,求所选中的树苗都能出售的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年2月21日《中共中央关于全面深化改革若干重大问题的决定》明确:坚持计划生育的基本国策,启动实施一方是独生子女的夫妇可生育两个孩子的政策.为了解某地区城镇居民和农村居民对“单独两孩”的看法,某媒体在该地区选择了3600人调查,就是否赞成“单独两孩”的问题,调查统计的结果如下表:
态度
调查人群
赞成 反对 无所谓
农村居民 2100人 120人 y人
城镇居民 600人 x人 z人
已知在全体样本中随机抽取1人,抽到持“反对”态度的人的概率为0.05.
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“反对”态度的人中,用分层抽样的方法抽取6人,按每组3人分成两组进行深入交流,求第一组中农村居民人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,b=1,c=
3
,∠C=
3
,则①a=
 
;②∠B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,
AB
=(1,0),
AC
=(2,2),则
AD
BD
等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[x1,x2]的函数y=f(x)的图象的两个端点为A(x1,y1),B(x2,y2).M(x,y)是f(x)图象上任意一点,其中x=λx1+(1-λ)x2,(λ∈R),且
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k恒成立,则称函数f(x)在[x1,x2]上“k阶线性近似”.若函数y=
x
与y=
3x
在[0,1]上有且仅有一个“k阶线性近似”,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校举行课外综合知识比赛,随机抽取400名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分…第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则400名同学中成绩优秀(大于等于80分)的学生有
 
名.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足:①f(1)=1,②?x∈R,f(x+5)≥f(x)+5,f(x+1)≤f(x)+1,则f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(x)=ax+a,f(x)=
2x-1,0≤x≤2
-x2,-2≤x<0
,对?x1∈[-2,2],?x2∈[-2,2],使g(x1)=f(x2)成立,则a的取值范围是(  )
A、[-1,+∞)
B、[-1,1]
C、(0,1]
D、(-∞,1]

查看答案和解析>>

同步练习册答案