已知等差数列{an}前三项的和为-3,前三项的积为8.
(1)求等差数列{an}的通项公式;
(2)若a2、a3、a1成等比数列,求数列{|an|}的前n项和.
(1)设等差数列{an}的公差为d,则a2=a1+d,a3=a1+2d,
由题意得![]()
解得![]()
所以由等差数列通项公式可得an=2-3(n-1)=-3n+5,或an=-4+3(n-1)=3n-7.
故an=-3n+5,或an=3n-7.
(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列;
当an=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.
故|an|=|3n-7|=![]()
记数列{|an|}的前n项和为Sn.
当n=1时,S1=|a1|=4;
当n=2时,S2=|a1|+|a2|=5;
当n≥3时,
Sn=S2+|a3|+|a4|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n-7)
=5+
=
n2-
n+10.
当n=2时,满足此式.
综上,Sn=![]()
科目:高中数学 来源: 题型:
对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an}的“差数列”的通项为2n,则数列{an}的前n项和Sn=________.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知{an}是等差数列,Sn为其前n项和,若S21=S4000,O为坐标原点,点P(1,an),Q(2011,a2011),则
等于( )
A.2011 B.-2011 C.0 D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
已知等差数列{an}首项为a,公差为b,等比数列{bn}首项为b,公比为a,其中a、b都是大于1的正整数,且a1<b1,b2<a3,那么a=________;若对于任意的n∈N*,总存在m∈N*,使得bn=am+3成立,则an=________.
查看答案和解析>>
科目:高中数学 来源: 题型:
若a>0且a≠1,b>0,则“logab>0”是“(a-1)(b-1)>0”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com