分析 $\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$.可得$\overrightarrow{BD}$=$\overrightarrow{BC}+\overrightarrow{CD}$,由于B,D,F三点共线,因此存在实数m使得$\overrightarrow{BF}$=m$\overrightarrow{BD}$,即可得出.
解答 解:∵$\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$.
∴$\overrightarrow{BD}$=$\overrightarrow{BC}+\overrightarrow{CD}$=-($\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$)+(2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)=$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$,
∵B,D,F三点共线,
∴存在实数m使得$\overrightarrow{BF}$=m$\overrightarrow{BD}$,
∴3$\overrightarrow{{e}_{1}}$-k$\overrightarrow{{e}_{2}}$=m($\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$)=m$\overrightarrow{{e}_{1}}$-4m$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两个不共线向量,
∴$\left\{\begin{array}{l}{3=m}\\{-k=-4m}\end{array}\right.$,
解得k=12.
故答案为:12.
点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2015}$,$\frac{1}{2014}$) | B. | (-$\frac{1}{2014}$,-$\frac{1}{2015}$)∪($\frac{1}{2015}$,$\frac{1}{2014}$) | ||
| C. | (-$\frac{1}{2013}$,-$\frac{1}{2014}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$) | D. | (-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{3π}{4}$) | B. | (-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$) | ||
| C. | (-1,1),[$\frac{π}{4}$,$\frac{3π}{4}$] | D. | (-1,1),[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y-2=0 | B. | x-y+3=0 | C. | x+y-3=0 | D. | x-y+2=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{32}$ | B. | $\frac{1}{16}$ | C. | $\frac{1}{64}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com