| A. | $\frac{17}{2}$ | B. | 9 | C. | $\frac{29}{3}$ | D. | 10 |
分析 画出约束条件的可行域,利用极值点的几何意义,化简所求的表达式,利用可行域求解目标函数的最大值即可.
解答
解:不等式组$\left\{\begin{array}{l}{2x+y-3≤0}\\{x-y+2≥0}\\{2x-3y-3≤0}\end{array}\right.$表示的平面区域为D,如图:
则|x+4|+|y+3|≤|x+y+7|,
则|x+4|+|y+3|的最大值,可以有|x+y+7|的最大值求解,
由$\left\{\begin{array}{l}{x-y+2=0}\\{2x-3y-3=0}\end{array}\right.$解得B(-9,-7);此时|x+y+7|=9
由$\left\{\begin{array}{l}{2x+y-3=0}\\{x-y+2=0}\end{array}\right.$,解得A($\frac{1}{3}$,$\frac{7}{3}$)此时|x+y+7|=$\frac{1}{3}$+$\frac{7}{3}$+7=$\frac{29}{3}$.
则|x+4|+|y+3|的最大值为:$\frac{29}{3}$.
故选:C.
点评 本题考查线性规划的简单应用,绝对值不等式的几何意义,考查数形结合以及转化思想的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| 表1 | 非统计专业 | 统计专业 |
| 男 | 13 | 10 |
| 女 | 7 | 20 |
| P(K2≥k0) | 0.05 | 0.025 | 0.01 | 0.005 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 |
| A. | 5% | B. | 2.5% | C. | 1% | D. | 0.5% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com