精英家教网 > 高中数学 > 题目详情
18.已知不等式组$\left\{\begin{array}{l}{2x+y-3≤0}\\{x-y+2≥0}\\{2x-3y-3≤0}\end{array}\right.$表示的平面区域为D,P(x,y)为D上一点,则|x+4|+|y+3|的最大值为(  )
A.$\frac{17}{2}$B.9C.$\frac{29}{3}$D.10

分析 画出约束条件的可行域,利用极值点的几何意义,化简所求的表达式,利用可行域求解目标函数的最大值即可.

解答 解:不等式组$\left\{\begin{array}{l}{2x+y-3≤0}\\{x-y+2≥0}\\{2x-3y-3≤0}\end{array}\right.$表示的平面区域为D,如图:
则|x+4|+|y+3|≤|x+y+7|,
则|x+4|+|y+3|的最大值,可以有|x+y+7|的最大值求解,
由$\left\{\begin{array}{l}{x-y+2=0}\\{2x-3y-3=0}\end{array}\right.$解得B(-9,-7);此时|x+y+7|=9
由$\left\{\begin{array}{l}{2x+y-3=0}\\{x-y+2=0}\end{array}\right.$,解得A($\frac{1}{3}$,$\frac{7}{3}$)此时|x+y+7|=$\frac{1}{3}$+$\frac{7}{3}$+7=$\frac{29}{3}$.

则|x+4|+|y+3|的最大值为:$\frac{29}{3}$.
故选:C.

点评 本题考查线性规划的简单应用,绝对值不等式的几何意义,考查数形结合以及转化思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.某高校《统计初步》课程的教师随机调查了选修该课的学生的一些情况,具体数据如表1:为了判断主修统计专业是否与性别有关,根据表中数据,得K2的观察值为k=$\frac{{50×{{(13×20-10×7)}^2}}}{23×27×20×30}$≈4.844,所以判断主修统计专业与性别有关,那么这种判断出错的可能性不超过(  )
表1非统计专业统计专业
1310
720
P(K2≥k00.050.0250.010.005
k03.8415.0246.6357.879
A.5%B.2.5%C.1%D.0.5%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图.
(Ⅰ)这50个路段为中度拥堵的有多少个?
(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数 x,y满足 (x-2)2+y2=1,则$\frac{y}{x}$的最大值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知tanα>0,则点P(sinα,cosα)位于(  )
A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=x3+ax2+bx+1的导数f'(x)满足f'(1)=2a,f'(2)=-b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x);
(Ⅱ) 设g(x)=f'(x)e-x,求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={x|x-2<3},B={x|2x-3<3x-2},则A∩B={x|-1<x<5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.袋中有大小相同的3个红球,2个白球,1个黑球.若不放回摸球,每次1球,摸取3次,则恰有两次红球的概率为$\frac{9}{20}$;若有放回摸球,每次1球,摸取3次,则摸到红球次数的期望为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=xlnx+\frac{1}{2}a{x^2}-1$,且f'(1)=-1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若对任意x∈(0,+∞),都有f(x)-2mx+1≤0,求m的取值范围;
(Ⅲ)证明函数y=f(x)+2x的图象在g(x)=xex-x2-1图象的下方.

查看答案和解析>>

同步练习册答案