精英家教网 > 高中数学 > 题目详情
8.已知函数$f(x)=xlnx+\frac{1}{2}a{x^2}-1$,且f'(1)=-1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若对任意x∈(0,+∞),都有f(x)-2mx+1≤0,求m的取值范围;
(Ⅲ)证明函数y=f(x)+2x的图象在g(x)=xex-x2-1图象的下方.

分析 (Ⅰ)求得导数,代入x=1,解方程可得a;
(Ⅱ)由题意可得xlnx-x2-2mx≤0恒成立,即:$m≥\frac{1}{2}lnx-\frac{1}{2}x$恒成立,令$h(x)=\frac{1}{2}lnx-\frac{1}{2}x$,求出h(x)的导数,单调区间,求得最大值,即可得到m的取值范围;
(Ⅲ)要证明函数y=f(x)+2x的图象在g(x)=xex-x2-1图象的下方,即证:f(x)+2x<xex-x2-1恒成立,即证lnx≤x-1,即证:ex-x-1>0,令φ(x)=ex-x-1,求得导数,得到单调性,即可得证.

解答 解:(Ⅰ)易知f'(x)=lnx+1+ax,
所以f'(1)=1+a,又f'(1)=-1…(1分)
∴a=-2…(2分)
∴f(x)=xlnx-x2-1.…(3分)
(Ⅱ)若对任意的x∈(0,+∞),都有f(x)-2mx+1≤0,
即xlnx-x2-2mx≤0恒成立,即:$m≥\frac{1}{2}lnx-\frac{1}{2}x$恒成立…(4分)
令$h(x)=\frac{1}{2}lnx-\frac{1}{2}x$,则$h'(x)=\frac{1}{2x}-\frac{1}{2}=\frac{1-x}{2x}$,…(6分)
当0<x<1时,$h'(x)=\frac{1-x}{2x}>0$,所以h(x)单调递增;
当x>1时,$h'(x)=\frac{1-x}{2x}<0$,所以h(x)单调递减;…(8分)
∴x=1时,h(x)有最大值$h(1)=-\frac{1}{2}$,
∴$m≥-\frac{1}{2}$,即m的取值范围为$[-\frac{1}{2},+∞)$.…(10分)
(Ⅲ)证明:要证明函数y=f(x)+2x的图象在g(x)=xex-x2-1图象的下方,
即证:f(x)+2x<xex-x2-1恒成立,
即:lnx<ex-2…(11分)
由(Ⅱ)可得:$h(x)=\frac{1}{2}lnx-\frac{1}{2}x≤-\frac{1}{2}$,所以lnx≤x-1,
要证明lnx<ex-2,只要证明x-1<ex-2,即证:ex-x-1>0…(12分)
令φ(x)=ex-x-1,则φ'(x)=ex-1,
当x>0时,φ'(x)>0,所以φ(x)单调递增,
∴φ(x)>φ(0)=0,
即ex-x-1>0,…(13分)
所以x-1<ex-2,从而得到lnx≤x-1<ex-2,
所以函数y=f(x)+2x的图象在g(x)=xex-x2-1图象的下方.…(14分)

点评 本题考查导数的运用:求单调区间和极值、最值,考查恒成立思想的运用和参数分离方法,以及构造函数法,注意运用分析法证明不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知不等式组$\left\{\begin{array}{l}{2x+y-3≤0}\\{x-y+2≥0}\\{2x-3y-3≤0}\end{array}\right.$表示的平面区域为D,P(x,y)为D上一点,则|x+4|+|y+3|的最大值为(  )
A.$\frac{17}{2}$B.9C.$\frac{29}{3}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)在[-1,1]上既是奇函数又是减函数,则满足f(1-x)+f(3x-2)<0的x的取值范围是$({\frac{1}{2},1}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题$p:sinx=\frac{1}{2}$,命题$q:x=\frac{π}{6}+2kπ,k∈Z$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在Rt△ABC中,∠A=90°,AB=AC=1,点E是AB的中点,点D满足$\overrightarrow{CD}=\frac{2}{3}\overrightarrow{CB}$,则$\overrightarrow{CE}•\overrightarrow{AD}$=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,且$FD=\sqrt{3}$.
(1)若∠BCD=60°,求证:BC⊥EF;
(2)若∠CBA=60°,求直线AF与平面FBE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数是偶函数的是(  )
A.y=1-lg|x|B.$y=lg\frac{x-1}{x+1}$C.$y=\frac{x+1}{x-1}-\frac{x-1}{x+1}$D.$y=\frac{|x|}{x+1}+\frac{|x|}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)是奇函数,当x>0时,f(x)=x•2x+a-1,若$f(-1)=\frac{3}{4}$,则a等于(  )
A.-3B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,曲线$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.(α$是参数)与曲线$\left\{\begin{array}{l}{x=tcos\frac{π}{3}}\\{y=tsin\frac{π}{3}}\end{array}\right.$(t是参数)的交点的直角坐标为$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})({-\frac{1}{2},-\frac{{\sqrt{3}}}{2}})$.

查看答案和解析>>

同步练习册答案