分析 (1)过点E作EH⊥BC于H,连接HD,证明四边形EHDF为平行四边形,可得EF∥HD,即可证明BC⊥EF;
(2)若∠CBA=60°,建立空间直角坐标系,求出平面EBF的法向量,即可求直线AF与平面FBE所成角的正弦值.
解答
(1)证明:如图,过点E作EH⊥BC于H,连接HD,∴EH=$\sqrt{3}$.
∵平面ABCD⊥平面BCE,EH?平面BCE,平面ABCD∩平面BCE=BC,
∴EH⊥平面ABCD.
又∵FD⊥平面ABCD,FD=$\sqrt{3}$,∴FD∥EH,且FD=EH.
∴四边形EHDF为平行四边形,
∴EF∥HD,
在等边三角形BCD中,BC⊥DH,则BC⊥EF.
(2)解:连接HA,由(1),得H为BC中点,又∠CBA=60°,△ABC为等边三角形,
∴HA⊥BC,分别以HB,HA,HE为x,y,z轴建立空间直角坐标系H-xyz.
则B(1,0,0),F(-2,$\sqrt{3}$,$\sqrt{3}$),E(0,0,$\sqrt{3}$),A(0,$\sqrt{3}$,0),
$\overrightarrow{BF}$=(-3,$\sqrt{3}$,$\sqrt{3}$),$\overrightarrow{BA}$=(-1,$\sqrt{3}$,0),$\overrightarrow{BE}$=(-1,0,$\sqrt{3}$),$\overrightarrow{AF}$=(-2,0,$\sqrt{3}$),
设平面EBF的法向量为$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{3x+\sqrt{3}y+\sqrt{3}z=0}\\{-x+\sqrt{3}z=0}\end{array}\right.$令z=1,
得$\overrightarrow{n}$=($\sqrt{3}$,2,1),∴直线AF与平面EBF所成角的正弦值为|$\frac{-\sqrt{3}}{\sqrt{4+3}•\sqrt{3+4+1}}$|=$\frac{\sqrt{42}}{28}$.
点评 本题考查线线垂直的证明,考查直线AF与平面EBF所成角的正弦值的求法,考查向量法在立体几何中的应用,考查学生的空间想象能力、逻辑推理能力和运算求解能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2)∪(1,+∞) | B. | (-2,1) | C. | (-∞,-1)∪(2,+∞) | D. | (-1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a)<f(c)<f(b) | B. | f(c)<f(b)<f(a) | C. | f(a)<f(b)<f(c) | D. | f(b)<f(c)<f(a) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com