精英家教网 > 高中数学 > 题目详情
19.已知集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,a∈R,x∈R},若A∪B=A,试求实数a的取值范围.

分析 求出集合的等价条件,根据集合的基本运算进行求解即可.

解答 解:A={x|x2+4x=0,x∈R}={0,-4},
若A∪B=A,则B⊆A,
方程x2+2(a+1)x+a2-1=0的判别式△=4(a+1)2-4(a2-1)=8a+8=8(a+1),
①若B=∅,即△=8(a+1)<0.即a<-1,满足条件.B⊆A.
②若B={0}或{-4},则△=8(a+1)=0,即a=-1,
此时方程为x2=0,解得x=0,即此时B={0}成立
③若B={0,-4},则△=8(a+1)>0,即a>-1,
则$\left\{\begin{array}{l}{0-4=-2(a+1)}\\{0×(-4)={a}^{2}-1=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a=1}\\{a=±1}\end{array}\right.$,解得a=1.
综上a≤-1或a=1.

点评 本题主要考查集合的基本运算以及集合关系的转化,根据一元二次方程根与判别式△之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x2+$\sqrt{x}$的奇偶性为(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x>0,则函数y=$\frac{4{x}^{2}-x+1}{x}$的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若不等式x+2$\sqrt{xy}$≤a(x+y)对任意的实数x,y∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知?x>0,ax2≤ex,则常数a的取值范围是a≤$\frac{{e}^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数:①f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$;②f(x)=x3-x;③f(x)=ln(x+$\sqrt{{x}^{2}+1}$);④f(x)=ln$\frac{1-x}{1+x}$.
其中奇函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x,y∈R,i为虚数单位,且(x+i)(1-i)=y,则x+y=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{lg(x+1),x>0}\\{{2}^{x}-1,x≤0}\end{array}\right.$,若f(2-a2)>f(a),则实数a的取值范围是(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asinωx+Bcosωx(其中A,B,ω是实常数,且ω>0,a=0)的最小正周期为2,且当x=$\frac{1}{3}$时,f(x)取得最大值2,求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案