精英家教网 > 高中数学 > 题目详情
7.求解函数y=$\sqrt{-ta{n}^{2}x+(\sqrt{3}+1)tanx-\sqrt{3}}$的定义域.

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则-tan2x+($\sqrt{3}$+1)tanx-$\sqrt{3}$≥0恒成立,
即tan2x-($\sqrt{3}$+1)tanx+$\sqrt{3}$≤0恒成立,
即(tanx-1)(tanx-$\sqrt{3}$)≤0,
即1≤tanx≤$\sqrt{3}$,
则kπ$+\frac{π}{4}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
即函数的定义域为为[kπ$+\frac{π}{4}$,kπ+$\frac{π}{3}$],k∈Z.

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.结合一元二次不等式以及正切函数的图象和性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.12,13,16,21,(  ),37.
A.25B.26C.28D.31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,发现该厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v(单位:m/s)与时间t(单位:s)满足函数关系:v(t)=$\left\{\begin{array}{l}{{t}^{2},0≤t≤10}\\{4t+60,10≤t≤20}\\{140,20≤t≤60}\end{array}\right.$,某公司拟购买一台颗粒输送仪,要求1min行驶的路程超过7 673m,问该厂生产的颗粒输送仪能否被列入拟挑选的对象之一.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=px-$\frac{p}{x}$-2lnx,其中p∈R.
(Ⅰ)求函数f(x)在(1,0)点的切线方程;
(Ⅱ)若函数f(x)在其定义域内为单调递增函数,求实数p的取值范围;
(Ⅲ)若函数g(x)=$\frac{2e}{x}$,且p>0,若在[1,e]上至少存在一个x的值使f(x)>g(x)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=5,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=4,则△ABC的面积的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P向圆引切线PQ,且满足|PQ|=|PA|,若以P为圆心所作的圆P与圆O有公共点,则圆P半径的最小值为(  )
A.$\frac{3\sqrt{5}}{5}$-1B.1C.2D.$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a∈(0,π),cos(a+$\frac{π}{3}$)=-$\frac{\sqrt{2}}{2}$,则tan2a=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知4sin2$\frac{A-B}{2}$+4sinAsinB=2+$\sqrt{2}$.
(1)求角C的大小;
(2)已知b=4,△ABC的面积为8,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在等腰三角形ABC中,∠B=∠C=30°,求下列事件的概率:
(1)在底边BC上任取一点P,使BP<AB;
(2)在∠BAC的内部任作射线AP交线段BC于点P,使BP<AB.

查看答案和解析>>

同步练习册答案