【题目】设函数,.
(1)求的极值;
(2)设≤,记在上的最大值为,求函数的最小值;
(3)设函数(为常数),若使≤≤在上恒成立的实数有且只有一个,求实数和的值.
【答案】(1) 当时,有极大值极小值;(2);(3) ,.
【解析】
试题分析:(1)求函数的导数,由得,分区间列表讨论函数的符号与函数的单调性,可求函数的极值; (2) 由(1)知区间上单调递增,在区间上单调递减,分与分别求函数的最大值,再计算的最小值即可;(3),构造函数,求函数的导数,通过导数求函数的最小值,由得,又,所以,由的唯一性,可得,.
试题解析: (1)
∴当变化时,可以得到如下表格:
0 | — | 0 | |||
单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
∴当时,有极大值极小值,
(2)由(1)知区间分别单调增,单调减,单调增,
所以当时,,特别当时,有;
当时,,则,
所以对任意的,
(3)由已知得在上恒成立,
则
∴时,,时,,
故时,函数取到最小值.从而;
在上恒成立,则,
∴时,,时,,
故时,函数取到最小值.从而,
由的唯一性知,.
科目:高中数学 来源: 题型:
【题目】某公司采用招考方式引进人才,规定必须在,三个测试点中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每测试个点测试结果互不影响,若考生小李和小王一起前来参加招考,小李在测试点测试合格的概率分别为,小王在上述三个测试点测试合格的概率都是.
(1)问小李选择哪两个测试点测试才能使得可以参加面试的可能性最大?请说明理由;
(2)假设小李选择测试点进行测试,小王选择测试点进行测试,记为两人在各测试点测试合格的测试点个数之和,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)试证明函数是偶函数;
(2)画出的图象;(要求先用铅笔画出草图,再用黑色签字笔描摹,否则不给分)
(3)请根据图象指出函数的单调递增区间与单调递减区间;(不必证明)
(4)当实数取不同的值时,讨论关于的方程的实根的个数;(不必求出方程的解)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】扬州瘦西湖隧道长米,设汽车通过隧道的速度为米/秒.根据安全和车流的需要,当时,相邻两车之间的安全距离为米;当时,相邻两车之间的安全距离为米(其中是常数).当时,,当时,.
(1)求的值;
(2)一列由辆汽车组成的车队匀速通过该隧道(第一辆汽车车身长为米,其余汽车车身长为米,每辆汽车速度均相同).记从第一辆汽车车头进入隧道,至第辆汽车车尾离开隧道所用的时间为秒.
①将表示为的函数;
②要使车队通过隧道的时间不超过秒,求汽车速度的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C所对应的边分别为a,b,c.
(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,求cosB的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(π﹣ωx)cosωx+cos2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在区间上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是 .(填序号)
①当0<CQ<时,S为四边形;
②当CQ=时,S为等腰梯形;
③当CQ=时,S与C1D1的交点R满足C1R=;
④当<CQ<1时,S为六边形;
⑤当CQ=1时,S的面积为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com