精英家教网 > 高中数学 > 题目详情
5.某班举行数理化竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,求全班人数.

分析 由已知作出文氏图,由此能求出全班人数.

解答 解:由已知作出文氏图如下图:

∴全班人数为:10+6+4+7+12+3+13=55.

点评 本题考查全班人数的求法,是基础题,解题时要认真审题,注意文氏图的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.近年来,全国各地数城市污染严重,为了提出有效的整治方案,将探究车流量与PM2.5的浓度的关系,现采集到某城市2017年4月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期七
车流量x(万辆)1234567
PM2.5的浓度y(微克/立方米)28303541495662
(1)求y关于x的线性回归方程;
(2)①利用(1)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
②规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数)
参考公式:回归直线的方程是$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
提示:$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=1372.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面几种推理是类比推理的是(  )
A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°
B.一切偶数都能被2整除,2100是偶数,所以2100能被2整除
C.由平面向量的运算性质,推测空间向量的运算性质
D.某校高二级有20班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(1,cosα),$\overrightarrow{b}$=(-2,sinα),且$\overrightarrow{a}$∥$\overrightarrow{b}$.
(1)求tan(π+α)的值;
(2)求3sin2α-sin(2π-α)cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设复数z满足$\frac{1-i}{z}$=i+2,则 z=(  )
A.$\frac{1}{5}-\frac{3}{5}i$B.$-\frac{1}{5}+\frac{3}{5}i$C.-$\frac{3}{5}$+$\frac{3}{5}$iD.$\frac{3}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用w与其航行速度x的平方成正比(即:w=kx2,其中k为比例系数);当航行速度为30海里/小时时,每小时的燃料费用为450元,其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}满足a1=1,a4=4;数列{bn}满足b1=a2,b2=a5,数列{bn-an}为等比数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知p:$\frac{1}{a-2}≥\frac{1}{2}$成立,q:函数f(x)=-(a-1)x(a>1且a≠2)是减函数,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知线段AM的端点A的坐标是(3,0),端点M在圆C:x2+y2=4上.
(1)当直线AM与圆C相切时,求直线AM的方程;
(2)若动点P满足$\overrightarrow{AP}$=2$\overrightarrow{MP}$,求点P的轨迹方程.

查看答案和解析>>

同步练习册答案