精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(﹣3,1), =(1,﹣2), = +k (k∈R).
(1)若 与向量2 垂直,求实数k的值;
(2)若向量 =(1,﹣1),且 与向量k + 平行,求实数k的值.

【答案】
(1)解: = +k =(﹣3+k,1﹣2k),2 =(﹣7,4).

与向量2 垂直,∴ (2 )=﹣7(﹣3+k)+4(1﹣2k)=0,解得k=


(2)解:k + =(k+1,﹣2k﹣1),∵ 与向量k + 平行,

∴(﹣2k﹣1)(﹣3+k)﹣(1﹣2k)(k+1)=0,解得k=


【解析】(1)由 与向量2 垂直,可得 (2 )=0,解得k.(2)利用向量共线定理即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】圆(x+1)2+y2=8内有一点P(﹣1,2),AB过点P,
(1)若弦长 ,求直线AB的倾斜角;
(2)若圆上恰有三点到直线AB的距离等于 ,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中.
(1)设 = ,求证:△ABC是等腰三角形;
(2)设向量 =(2sinC,﹣ ), =(sin2C,2cos2 ﹣1),且 ,若sinA= ,求sin( ﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E,F分别是棱AB,BC的中点.证明A1 , C1 , F,E四点共面,并求直线CD1与平面A1C1FE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的函数,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式exf(x)>ex+1的解集为(
A.(0,+∞)
B.(﹣∞,0)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x﹣2x
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0, ]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x)+f(x+1)=0,且在[﹣3,﹣2]上f(x)=2x+5,A、B是三边不等的锐角三角形的两内角,则下列不等式正确的是(
A.f(sinA)>f(sinB)
B.f(cosA)>f(cosB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是圆F1:(x+1)2+y2=16上任意一点(F1是圆心),点F2与点F1关于原点对称.线段PF2的中垂线m分别与PF1、PF2交于M、N两点.
(1)求点M的轨迹C的方程;
(2)直线l经过F2 , 与抛物线y2=4x交于A1 , A2两点,与C交于B1 , B2两点.当以B1B2为直径的圆经过F1时,求|A1A2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1,点M与曲线C的焦点不重合,若点M关于曲线C的两个焦点的对称点分别为A,B,M,N是坐标平面内的两点,且线段MN的中点P恰好在双曲线C上,则|AN﹣BN|=

查看答案和解析>>

同步练习册答案