精英家教网 > 高中数学 > 题目详情
13.在如图所示的四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥CD,BC⊥平面PAB,且E、M、N分别为PD、CD、AD的中点,$\overrightarrow{PF}=3\overrightarrow{FD}$.
(1)证明:PB∥平面FMN;
(2)若PA=AB=2,求二面角E-AC-B的余弦值.

分析 (1)连结BD,分别交AC、MN于点O、G,连结EO、FG,推导出EO∥PB,FG∥EO,PB∥FG,由此能证明PB∥平面FMN.
(2)以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角E-AC-B的余弦值.

解答 证明:(1)连结BD,分别交AC、MN于点O、G,连结EO、FG,
∵O为BD中点,E为PD中点,∴EO∥PB.…(2分)
又$\overrightarrow{PF}=3\overrightarrow{FD}$,∴F为ED中点,又CM=MD,AN=DN,∴G为OD中点,
∴FG∥EO,∴PB∥FG.…(4分)
∵FG?平面FMN,PB?平面FMN,
∴PB∥平面FMN.…(5分)
解:(2)∵BC⊥平面PAB,∴BC⊥PA,又PA⊥CD,BC∩CD=C,
∴PA⊥平面ABCD.…(6分)
如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,
则A(0,0,0),C(2,2,0),B(2,0,0),E(0,1,1),
则$\overrightarrow{AC}=({2,2,0})$,$\overrightarrow{AE}=({0,1,1})$,…(7分)
∵PA⊥平面ABCD,∴平面ABC的一个法向量n0=(0,0,1).…(8分)
设平面AEC的法向量为n=(x,y,z),
则$\left\{\begin{array}{l}n•\overrightarrow{AE}=0\\ n•\overrightarrow{AC}=0\end{array}\right.$,即$\left\{\begin{array}{l}y+z=0\\ 2x+2y=0\end{array}\right.$,…(9分)
令x=1,则y=-1,z=1,∴n=(1,-1,1),…(10分)
∴$cos({{n_0},n})=\frac{{{n_0}•n}}{{|{n_0}||n|}}=\frac{{\sqrt{3}}}{3}$.…(11分)
由图可知,二面角E-AC-B为钝角,
∴二面角E-AC-B的余弦值为$-\frac{{\sqrt{3}}}{3}$.…(12分)

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sinx+2cos2$\frac{x}{2}$-1,g(x)=$\sqrt{2}$sin2x,则下列结论正确的是(  )
A.把函数f(x)图象上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移$\frac{π}{4}$个单位长度,可得到函数g(x)的图象
B.两个函数的图象均关于直线x-=-$\frac{π}{4}$对称
C.两个函数在区间(-$\frac{π}{4}$,$\frac{π}{4}$)上都是单调递增函数
D.函数y=g(x)在[0,2π]上只有4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+blnx和$g(x)=\frac{x-10}{x-4}$的图象在x=5处的切线互相平行.
(1)求b值;
(2)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆C的中心在坐标原点,对称轴为坐标轴,其一个焦点与抛物线y2=8x的焦点重合;过点M(1,1)且斜率为$-\frac{1}{2}$的直线交椭圆C于A、B两点,且M是线段AB的中点,则椭圆C的方程为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=x2-2x+1(x≥1)的反函数f-1(x)=(  )
A.1+$\sqrt{x}$B.1±$\sqrt{x}$C.1-$\sqrt{x}$D.$\sqrt{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=20x焦点F恰好是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,且双曲线过点(4,3),则该双曲线的渐近线方程为y=±$\frac{\sqrt{6}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,最小值为4的是(  )
A.y=log3x+4logx3B.y=ex+4e-x
C.y=sinx+$\frac{4}{sinx}$(0<x<π)D.y=x+$\frac{4}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复数z对应的点在直线y=2x上,且|z|=$\sqrt{5}$,则复数z=1+2i或-1-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=\frac{1}{{\sqrt{2-x}}}+ln(x+1)$的定义域为(  )
A.(-1,2]B.(-1,2)C.(2,+∞)D.(-1,2)∪(2,+∞)

查看答案和解析>>

同步练习册答案