| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
分析 法一:利用不等式$\frac{1}{x}+\frac{1}{y}≥\frac{4}{x+y}$,即可求出答案,
法二:先通分,再利用基本不等式即可求出.
解答 解:法一:利用不等式$\frac{1}{x}+\frac{1}{y}≥\frac{4}{x+y}$,$\frac{1}{{2-{{cos}^2}θ}}+\frac{1}{{2-{{sin}^2}θ}}≥\frac{4}{{4-({{sin}^2}θ+{{cos}^2}θ)}}=\frac{4}{3}$,当且仅当sin2θ=cos2θ,即$θ=\frac{kπ}{2}+\frac{π}{4}(k∈Z)$时,等号成立,故选A;
法二:直接通分,$\frac{1}{{2-{{cos}^2}θ}}+\frac{1}{{2-{{sin}^2}θ}}=\frac{{4-({{sin}^2}θ+{{cos}^2}θ)}}{{4-2({{sin}^2}θ+{{cos}^2}θ)+{{sin}^2}θ{{cos}^2}θ}}$=$\frac{3}{{2+\frac{1}{4}{{sin}^2}2θ}}≥\frac{4}{3}$,
当且仅当sin2θ=cos2θ,即$θ=\frac{kπ}{2}+\frac{π}{4}(k∈Z)$时,等号成立.
故选:A.
点评 本题考查利用基本不等式、函数的单调性求最值问题,考查化简、变形能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 141 | B. | 142 | C. | 149 | D. | 150 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1)∪(1,+∞) | B. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,+∞) | ||
| C. | (-∞,1)∪(1,+∞) | D. | R |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com