精英家教网 > 高中数学 > 题目详情
11.如果数列{an}的前n项和Sn=2an-1,则此数列的通项公式an=2n-1

分析 利用an与Sn之间的关系、计算可知数列{an}构成以1为首项、2为公比的等比数列,进而计算可得结论.

解答 解:当n≥2时an=Sn-Sn-1
=(2an-1)-(2an-1-1)
=2an-2an-1
整理得:an=2an-1
又∵当n=1时,S1=2a1-1,即a1=1,
∴数列{an}构成以1为首项、2为公比的等比数列,
∴an=1•2n-1=2n-1
故答案为:2n-1

点评 本题考查数列的通项,利用an与Sn之间的关系是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.$\underset{lim}{t→0}\frac{\sqrt{4+t}-2}{t}$的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A,B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上的两个动点,满足∠AOB=90°.
(1)求证:原点O到直线AB的距离为定值;
(2)求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的最大值;
(3)求过点O,且分别以OA,OB为直径的两圆的另一个交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的动点,F是椭圆的右焦点,已知点A(1,3),则|PA|+|PF|的最小值为(  )
A.$\sqrt{5}$B.4C.5D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆x2+4y2=m上两点间的最大距离是8.则实数m的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如果a、b、c都是正数.那么(a+b)(b+c)(c+a)≥8abc.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市居民阶梯电价将城乡居民每月用电量划分为三档,电价实行分档递增;第一档电量为2880千瓦时(240千瓦×12个月)及以下的电量,0.4883元/千瓦时;第二档电量为2881千瓦时至4800千瓦时(400千瓦时×12个月)之间的电量,电价标准比第一档电价提高0.05元/千瓦时,即0.5383元/千瓦时;第三档电量超过4800千瓦时的电量,电价标准比第一档电价提高0.3元/千瓦时,即0.7883元/千瓦时.
某一居民用户2013年总用电量为3600千瓦时,电费一共要花多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知两定点A(0,-2),B(0,2),点P在椭圆$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{16}$=1,且满足|$\overrightarrow{AP}$|-|$\overrightarrow{BP}$|=2,则$\overrightarrow{AP}$•$\overrightarrow{BP}$为(  )
A.-12B.12C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过函数f(x)=a+$\frac{b}{x}$(a,b>0)上一点(1,$\frac{3}{2}$)作f(x)图象的切线l,已知l与两坐标轴围成的三角形面积为4.
(1)求a,b的值.
(2)数列{an}满足:an=f(n),{an}前n项之积记为Tn,证明对任意n∈N+,不等式Tn>$\sqrt{n+1}$成立.

查看答案和解析>>

同步练习册答案