精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,其左、右焦点为F1F2,点P是坐标平面内一点,且其中O为坐标原点。

I) 求椭圆C的方程;

II) 如图,过点S0},且斜率为k的动直线l交椭圆于AB两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

【答案】1

2)在y轴上存在定点M,使得以AB为直径的圆恒过这个点,

M的坐标为(01)。

【解析】

1)利用;(2)直线方程与椭圆方程,联立方程组并借助于韦达定理,求点的坐标.

:(1),① ……1

,,即② ……2

代入得:. 故所求椭圆方程为……4

(2)设直线,代入,有.

,则. ……6

轴上存在定点满足题设,则

……9

由题意知,对任意实数都有恒成立, ……10

成立.

解得……11

轴上存在定点,使以为直径的圆恒过这个定点. ……12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆长轴是短轴的倍,且右焦点为.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)直线交椭圆两点,若线段中点的横坐标为,求直线的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:函数在区间上是减函数;

(2)当时,证明:函数只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD-A1B1C1D1中,CDAB, ABBC,AB=BC=2CD=2,侧棱AA1⊥平面ABCD.且点MAB1的中点

(1)证明:CM∥平面ADD1A1

(2)求点M到平面ADD1A1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是梯形,且,,,,.

(1)求证:平面 平面;

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为分别为的右顶点和上顶点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)若分别是轴负半轴,轴负半轴上的点,且四边形的面积为2,设直线的交点为,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.

(Ⅰ)若,求的面积;

(Ⅱ)若过点的直线与椭圆相交于两点,设上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.

(1)求椭圆C的标准方程;

(2)直线x=﹣2与椭圆交于P,Q两点,A,B是椭圆上位于直线x=﹣2两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.

查看答案和解析>>

同步练习册答案