【题目】已知椭圆的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(Ⅰ)若,求的面积;
(Ⅱ)若过点的直线与椭圆相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.
【答案】(Ⅰ)3或1(Ⅱ)或.
【解析】
(I)利用椭圆的焦距、离心率及即可得到椭圆的标准方程;设,利用向量的数量积及点满足椭圆的方程即可得出点的坐标有两种,分别利用三角形面积公式计算即可;(Ⅱ)设,,把直线的方程与椭圆方程联立得到判别式△满足的条件及其根与系数的关系,再利用向量的模的计算公式即可得出.
(Ⅰ)由题意知:,,又,
解得:,∴椭圆的方程为:
可得:,,设,则,,
∵,∴,即
由,或即,或
①当的坐标为时,,,且,
∴;
②当的坐标为时,,,所以为直角三角形,
,,
∴
综上可知:或1.
(Ⅱ)由题意可知直线的斜率存在.设,,,
由得:
由得: ,
∵,∴即
∴,结合得:∵,∴
从而, ,
∵点在椭圆上,∴,整理得:
即,∴,或.
科目:高中数学 来源: 题型:
【题目】已知定义域是R上的奇函数.
(1)求a;
(2)判断在R上的单调性,并用定义法证明;
(3)若对任意的,不等式恒成立,求实数k的取值范围;
(4)设关于x方程有零点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其左、右焦点为F1、F2,点P是坐标平面内一点,且其中O为坐标原点。
(I) 求椭圆C的方程;
(II) 如图,过点S(0,},且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若曲线上一点的极坐标为,且过点,求的普通方程和的直角坐标方程;
(2)设点,与的交点为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市关系要好的四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4人,(乘同一辆车的4名小孩不考虑位置差异).
(1)共有多少种不同的乘坐方式?
(2)若户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某理财公司有两种理财产品和.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
产品(其中)
(Ⅰ)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于,求的取值范围;
(Ⅱ)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:+=1(a>b>0)的离心率为,直线l:x+2y=4与椭圆有且只有一个交点T.
(I)求椭圆C的方程和点T的坐标;
(Ⅱ)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断是否为定值,若是请求出定值,若不是请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商为分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,搜集了相关数据,得到下列表格:
(1)请用相关系数说明与之间是否存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)建立关于的线性回归方程(系数精确到),预测当宣传费用为万元时的利润,
附参考公式:回归方程中和最小二乘估计公式分别为
,,相关系数
参考数据:
,,,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com