精英家教网 > 高中数学 > 题目详情
已知集合A={x||1-
x-13
|>2,x∈R}
,集合B={x|x2-2x+1-m2>0,m<0,x∈R},全集I=R,若“x∈A”是“x∈B”充分非必要条件,求实数m的取值范围.
分析:通过解绝对值不等式求出集合A,同样求出不等式x2-2x+1-m2>0对应的x的范围集合B,将条件关系转化为集合的包含关系,列出端点满足的大小关系求出m的范围.
解答:解:|1-
x-1
3
|>2解得x<-2或x>10
∴A={x|x<-2或x>10}
x2-2x+1-m2>0解得x<1+m或x>1-m,
B={x|x<1+m或x>1-m}
∵若“x∈A”是“x∈B”充分非必要条件,
∴A?B
∴1-m≤且1+m≥-2
解得m≥-3.
所以实数m的取值范围[-3,0).
点评:解决命题间的条件问题应该先将各个命题化简,若各个命题是由数集组成,可将条件问题转化为集合的包含关系问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案