(09年泗阳中学模拟六)(14分)
已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
(Ⅰ)求f()的值;
(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
解析:(Ⅰ)f(x)=
=
=2sin(-)
因为 f(x)为偶函数,
所以 对x∈R,f(-x)=f(x)恒成立,
因此 sin(--)=sin(-).
即-sincos(-)+cossin(-)=sincos(-)+cossin(-),
整理得 sincos(-)=0.因为 >0,且x∈R,所以 cos(-)=0.
又因为 0<<π,故 -=.所以 f(x)=2sin(+)=2cos.
由题意得
故 f(x)=2cos2x.
因为
(Ⅱ)将f(x)的图象向右平移个个单位后,得到的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到的图象.
当 2kπ≤≤2 kπ+ π (k∈Z),
即 4kπ+≤≤x≤4kπ+ (k∈Z)时,g(x)单调递减.
因此g(x)的单调递减区间为 (k∈Z)
科目:高中数学 来源: 题型:
(09年泗阳中学模拟六)(15分)已知m∈R,直线l:和圆C:。
(1)求直线l斜率的取值范围;
(2)直线l能否将圆C分割成弧长的比值为的两段圆弧?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年泗阳中学模拟六)(15分
如图,某小区准备在一直角围墙内的空地上植造一块“绿地”,其中长为定值, 长可根据需要进行调节(足够长).现规划在的内接正方形内种花,其余地方种草,且把种草的面积与种花的面积的比值称为“草花比”.
(Ⅰ)设,将表示成的函数关系式;
(Ⅱ)当为多长时,有最小值?最小值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年泗阳中学模拟六)(14分) 如图,在多面体ABCDE中,AE⊥ABC,BD∥AE,
且AC=AB=BC=BD=2,AE=1,F在CD上(不含C, D两点)
(1)求多面体ABCDE的体积;
(2)若F为CD中点,求证:EF⊥面BCD;
(3)当的值= 时,能使AC ∥平面EFB,并给出证明。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com