精英家教网 > 高中数学 > 题目详情
已知函数满足,且时,,则当时,的图象的交点个数为(       )
A.11B.10C.9 D.8
C

试题分析:∵满足,且时,

分别作出函数的图像如图;

由图象可知的图象的交点个数为9个.故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某家具厂生产一种儿童用组合床柜的固定成本为20000元,每生产一组该组合床柜需要增加投入100元,已知总收益满足函数:,其中是组合床柜的月产量.
(1)将利润元表示为月产量组的函数;
(2)当月产量为何值时,该厂所获得利润最大?最大利润是多少?(总收益=总成本+利润).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价元与日销售量件之间有如下关系:
x
45
50
y
27
12
(I)确定的一个一次函数关系式
(Ⅱ)若日销售利润为P元,根据(I)中关系写出P关于的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).
(1)求h(a);
(2)是否存在实数mn同时满足下列条件:
mn>3;
②当h(a)的定义域为[nm]时,值域为[n2m2]?若存在,求出mn的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于正整数,若,当最小时,则称的“最佳分解”,规定.关于有下列四个判断:①;②;③;④.其中正确的序号是      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出以下四个结论:
①函数的对称中心是
②若不等式对任意的x∈R都成立,则
③已知点与点Q(l,0)在直线两侧,则
④若将函数的图像向右平移个单位后变为偶函数,则的最小值是
其中正确的结论是____________(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给定,设函数满足:对于任意大于的正整数
(1)设,则      
(2)设,且当时,,则不同的函数的个数为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,与函数有相同图象的一个是
A.B.C.D.

查看答案和解析>>

同步练习册答案