【题目】已知函数(其中为自然对数的底数,).
(1)若是函数的极值点,求的值,并求的单调区间;
(2)若时都有,求实数的取值范围.
【答案】(1);的单调递减区间为,单调递增区间为;
(2)
【解析】
(1)由极值点可知,从而求得;根据导函数的正负即可确定的单调区间;
(2)求导后得到导函数;当和时,可根据导函数正负确定单调递增,从而,满足题意;当时,由零点存在定理可知存在,使得时,,由单调性可知不恒成立;从而得到所求范围.
(1)由得:定义域为,
是的极值点 ,解得:
此时,
当时,,单调递减;当时,,单调递增
的单调递减区间为,单调递增区间为
(2),
①当时,恒成立 单调递增 ,满足题意
②当时,是上的增函数,且
若,即,则且不恒等于
单调递增 ,满足题意
若,即,,
存在,使得
当时,,则单调递减
即不恒成立,不合题意
综上所述:实数的取值范围为
科目:高中数学 来源: 题型:
【题目】已知圆C1的圆心在坐标原点O,且恰好与直线相切.
(Ⅰ)求圆C1的标准方程;
(Ⅱ)设点A为圆上一动点,AN垂直于x轴于点N,若动点Q满足
(其中m为非零常数),试求动点Q的轨迹方程;
(Ⅲ)在(Ⅱ)的结论下,当m=时,得到动点Q的轨迹为曲线C,与l1垂直的直线l与曲线C交于B,D两点,求△OBD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等腰梯形中,,,,为上一点,且,为的中点.沿将梯形折成大小为的二面角,若内(含边界)存在一点,使得平面,则的取值范围是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】箱子里有16张扑克牌:红桃、、4,黑桃、8、7、4、3、2,草花、、6、5、4,方块、5,老师从这16张牌中挑出一张牌来,并把这张牌的点数告诉了学生甲,把这张牌的花色告诉了学生乙,这时,老师问学生甲和学生乙:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,老师听到了如下的对话:学生甲:我不知道这张牌;学生乙:我知道你不知道这张牌;学生甲:现在我知道这张牌了;学生乙:我也知道了.则这张牌是( )
A. 草花5B. 红桃
C. 红桃4D. 方块5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列、满足 (N*),则称为数列的“偏差数列”.
(1)若为常数列,且为的“偏差数列”,试判断是否一定为等差数列,并说明理由;
(2)若无穷数列是各项均为正整数的等比数列,且,为数列的“偏差数列”,求的值;
(3)设,为数列的“偏差数列”,,且,若对任意恒成立,求实数M的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形中,点,,,对角线,交于点P.
(1)求直线的方程;
(2)若点E,F分别在平行四边形的边和上运动,且,求的取值范围;
(3)试写出三角形区域(包括边界)所满足的线性约束条件,若在该区域上任取一点M,使,试求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com