【题目】若数列、满足 (N*),则称为数列的“偏差数列”.
(1)若为常数列,且为的“偏差数列”,试判断是否一定为等差数列,并说明理由;
(2)若无穷数列是各项均为正整数的等比数列,且,为数列的“偏差数列”,求的值;
(3)设,为数列的“偏差数列”,,且,若对任意恒成立,求实数M的最小值.
【答案】(1)见解析;(2)或;(3)
【解析】
(1){an}不一定为等差数列,如;
(2)设数列{an}的公比为q,解方程可得首项和公比,由等比数列的通项公式和求和公式,计算可得所求值;
(3)由累加法可得数列{an}的通项公式,讨论n为奇数或偶数,求得极限,由不等式恒成立思想可得M的最小值.
解:(1) 如,则为常数列,但不是等差数列,
(2) 设数列的公比为,则由题意,、均为正整数,
因为,所以,
解得或,
故 或(N*),
①当时,,,,
② 当时,,,
综上,的值为或;
(3) 由≤且≤得,=
故有:,
,
,
累加得:
=
=,
又,所以
当n为奇数时,单调递增,,,
当n为偶数时,单调递减,,,
从而≤,所以M≥,即M的最小值为.
科目:高中数学 来源: 题型:
【题目】下列关于命题的说法错误的是( )
A.命题“若x2﹣3x+2=0,则x=2”的逆否命题为“若x≠2,则x2﹣3x+2≠0”
B.“a=2”是“函数f(x)=ax在区间(﹣∞,+∞)上为增函数”的充分不必要条件
C.命题“x∈R,使得x2+x+1<0”的否定是:“x∈R,均有x2+x+1≥0”
D.“若f ′()=0,则为y=f(x)的极值点”为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)如图,在边长为的菱形中,,点,分别是边,的中点,.沿将△翻折到△,连接,得到如图的五棱锥,且.
(1)求证:平面;
(2)求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为8的菱形中,,将沿折起,使点到达的位置,且二面角为.
(1)求异面直线与所成角的大小;
(2)若点为中点,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,, ,为线段的中点,为线段上一动点(异于点),为线段上一动点,且.
(Ⅰ)求证:平面平面;
(Ⅱ)若,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
城 | 城 | 城 | |
优(个) | 28 | ||
良(个) | 32 | 30 |
已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.
(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;
(2)已知, ,求在城中空气质量为优的天数大于空气质量为良的天数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com