精英家教网 > 高中数学 > 题目详情

(本题满分16分)已知函数,当时,的值域为,当时,的值域为,依次类推,一般地,当时,的值域为,其中k、m为常数,且.(1)若k=1,求数列的通项公式;

(2)若,问是否存在常数m,使数列是公比不为1的等比数列?请说明理由;(3)若,设数列的前n项和分别为,求.

解(1)因为,当时,为单调增函数,

所以其值域为

于是.                    ………………

又a1=0,  b1=1, 所以.               ………………

(2)因为,当时,为单调增函数,

所以的值域为,所以.       

要使数列{bn}为等比数列,必须为与n无关的常数.

故当且仅当时,数列是公比不为1的等比数列.

(本题考生若先确定m=0,再证此时数列是公比不为1的等比数列,给全分)

(3)因为,当时,为单调减函数,

所以的值域为

于是.

所以.

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题

(本题满分16分)
已知函数,且对任意,有.
(1)求
(2)已知在区间(0,1)上为单调函数,求实的取值范围.
(3)讨论函数的零点个数?(提示)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数为实常数).

(I)当时,求函数上的最小值;

(Ⅱ)若方程在区间上有解,求实数的取值范围;

(Ⅲ)证明:

(参考数据:

 

查看答案和解析>>

科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题

(本题满分16分) 已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.

 ⑴求椭圆的方程;

⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数是定义在上的偶函数,且当时,

(Ⅰ)求的值;

(Ⅱ)求函数上的解析式;

(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案