ÒÑ֪˫ÇúÏßCµÄÖÐÐÄÔÚÔ­µãÇÒ¾­¹ýµãD£¨2£¬0£©£¬
m1
=£¨2£¬1£©£¬
m2
=£¨2£¬-1£©·Ö±ðÊÇÁ½Ìõ½¥½üÏߵķ½ÏòÏòÁ¿£®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÍÖÔ²
x2
4
+y2=1µÄ×ó¶¥µãΪA£¬¾­¹ýB£¨-
6
5
£¬0£©µÄÖ±Ïß?ÓëÍÖÔ²½»ÓÚM£¬NÁ½µã£¬ÊÔÅжÏ
AM
AN
ÊÇ·ñΪ¶¨Öµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©Ë«ÇúÏßC»òÅ×ÎïÏßy2=2px£¨p£¾0£©ÊÇ·ñÒ²ÓÐÀàËÆ£¨2£©µÄ½áÂÛ£¿ÈôÊÇ£¬ÇëÑ¡ÔñÒ»¸öÇúÏßд³öÀàËÆ½áÂÛ£¨²»ÒªÇóÊéдÇó½â»òÖ¤Ã÷¹ý³Ì£©£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ,Àà±ÈÍÆÀí,Ë«ÇúÏߵıê×¼·½³Ì
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©Çó³öË«ÇúÏߵĽ¥½üÏß·½³Ì£¬Çó³öa£¬b£¬¼´¿ÉµÃµ½Ë«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÅжÏ
AM
AN
ÊÇ·ñΪ¶¨Öµ£¬Í¨¹ýÖ±Ïß?µÄбÂʲ»´æÔÚʱ£¬Ö±½ÓÅжÏÇó½â£®Ö±Ïß?µÄбÂÊ´æÔÚʱ£¬Éè³öÖ±Ïß·½³ÌÓëË«ÇúÏß·½³ÌÁªÁ¢£¬Í¨¹ýΤ´ï¶¨ÀíÒÔ¼°ÏòÁ¿µÄÊýÁ¿»ý»¯¼òÕûÀí¼´¿É£®
£¨3£©Ë«ÇúÏßC»òÅ×ÎïÏßy2=2px£¨p£¾0£©Ò²ÓÐÀàËÆ£¨2£©µÄ½áÂÛ£¬Ð´³öÀàËÆ½áÂÛ£¨²»ÒªÇóÊéдÇó½â»òÖ¤Ã÷¹ý³Ì£©£®
½â´ð£º ½â£º£¨1£©Á½Ìõ½¥½üÏߵķ½³ÌΪy=¡À
1
2
x
£¬ÒÀÌâÒâa=2£¬ËùÒÔb=1£®¹ÊË«ÇúÏßCµÄ·½³ÌΪ£º
x2
4
-y2=1
£®¡­3¡ä
£¨2£©
AM
AN
Ϊ¶¨Öµ0£¬ÀíÓÉÈçÏ£ºµ±Ö±Ïß?µÄбÂʲ»´æÔÚʱ£¬?µÄ·½³ÌΪx=-
6
5
£¬ÇóµÃM(-
6
5
£¬
4
5
)£¬N(-
6
5
£¬-
4
5
)
£¬´Ëʱ
AM
AN
=(
4
5
£¬
4
5
)•(
4
5
£¬-
4
5
)=0
£»¡­4¡ä
µ±Ö±Ïß?µÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïß?µÄ·½³ÌΪ£ºy=k(x+
6
5
)
£¬
ÁªÁ¢
y=k(x+
6
5
)
x2
4
+y2=1
µÃ£¨100k2+25£©x2+240k2x+144k2-100=0£¬
ÏÔÈ»¡÷£¾0£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôò
x1+x2=-
240k2
100k2+25
x1x2=
144k2-100
100k2+25
£¬¡­6¡ä£¬
y1y2=k2(x1+
6
5
)(x2+
6
5
)=k2[x1x2+
6
5
(x1+x2)+
36
25
]=-
64k2
100k2+25
£¬
ËùÒÔ
AM
AN
=(x1+2£¬y1)•(x2+2£¬y2)=(x1+2)•(x2+2)+y1y2=x1x2+2(x1+x2)+4+y1y2
¡­9¡ä
=
144k2-100
100k2+25
+2(-
240k2
100k2+25
)+4+
-64k2
100k2+25
=0
£¬
×ÛÉÏËùÊö£¬
AM
AN
Ϊ¶¨Öµ0£®¡­10¡ä
£¨3£©Ë«ÇúÏßC£º
x2
4
-y2=1
µÄ×ó¶¥µãΪA£¬¾­¹ýB(-
10
3
£¬0)
µÄÖ±Ïß?ÓëË«ÇúÏßC½»ÓÚM£¬NÁ½µã£¬
Ôò
AM
AN
Ϊ¶¨Öµ0£®
˵Ã÷£º¢Ù±ØÐëÖ¸³öBµã×ø±ê£¬µ«¿ÉÒÔ²»Ëµ¾ßÌ嶨ֵ£®
¢Ú¶ÔË«ÇúÏßC¶øÑÔ£¬ÓëÓÒ¶¥µãÏà¹ØµÄµãΪB(
10
3
£¬0)
£®
¢ÛÅ×ÎïÏßy2=2px£¨p£¾0£©Ò²ÓÐÀàËÆ½áÂÛ£ºÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ¶¥µãΪO£¬¾­¹ýµãB£¨2p£¬0£©µÄÖ±Ïß?ÓëÅ×ÎïÏßy2=2px£¨p£¾0£©½»ÓÚM£¬NÁ½µã£¬Ôò
AM
AN
Ϊ¶¨Öµ0£®¡­13¡ä
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÓ¦Óã¬Ë«ÇúÏß·½³ÌµÄÇ󷨣¬Àà±ÈÍÆÀíµÄÓ¦Óã¬×ÛºÏÐԱȽÏÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈënµÄֵΪ4£¬ÔòÊä³öSµÄֵΪ£¨¡¡¡¡£©
 
A¡¢5B¡¢6C¡¢7D¡¢8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x3-mx2-x+1£¬ÆäÖÐmΪʵÊý£®
£¨1£©µ±m=1ʱ£¬Çóº¯Êýf£¨x£©ÔÚÇø¼ä[-1£¬
4
3
]ÉϵÄ×î´óÖµºÍ×îСֵ£»
£¨2£©Èô¶ÔÒ»ÇеÄʵÊýx£¬ÓÐf¡ä£¨x£©¡Ý|x|-
7
4
ºã³ÉÁ¢£¬ÆäÖÐf¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}Âú×ãa1=
1
2
£¬an+1=
1
2-an
£¨n¡ÊN*£©
£¨¢ñ£©ÇóÖ¤£º{
1
an-1
}ΪµÈ²îÊýÁУ¬²¢Çó³ö{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=
1
an
-1£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪBn£¬¶ÔÈÎÒân¡Ý2¶¼ÓÐB3n-Bn£¾
m
20
³ÉÁ¢£¬ÇóÕûÊýmµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèË«ÇúÏß
x2
a2
-
y2
b2
=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãΪF£¬¹ýµãF×÷ÓëxÖá´¹Ö±µÄÖ±Ïßl½»Á½½¥½üÏßÓÚA¡¢BÁ½µã£¬ÇÒÓëË«ÇúÏßÔÚµÚÒ»ÏóÏ޵Ľ»µãΪP£¬ÉèOÎª×ø±êÔ­µã£¬Èô
OP
=¦Ë
OA
+¦Ì
OB
£¬¦Ë¦Ì=
3
16
£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=sin£¨2x-
¦Ð
6
£©+2cos2x-1£»
£¨1£©Çóf£¨x£©ÔÚ[-
¦Ð
2
£¬¦Ð]Éϵĵ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÔÚ¡÷ABCÖУ¬ÈýÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªf£¨A£©=
1
2
£¬b£¬a£¬c³ÉµÈ²îÊýÁУ¬ÇÒ
AB
AC
=9£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSn=
1-an
2
£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{nan}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªx+2y=6£¬Çó2x+4yµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÍÖÔ²CµÄÓÒ½¹µãΪF£¬ÓÒ×¼ÏßΪl£¬ÀëÐÄÂÊΪ
3
2
£¬µãAÔÚÍÖÔ²ÉÏ£¬ÒÔFΪԲÐÄ£¬FAΪ°ë¾¶µÄÔ²ÓëlµÄÁ½¸ö¹«¹²µãÊÇB£¬D£®
£¨1£©Èô¡÷FBDÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬ÇóÔ²µÄ·½³Ì£»
£¨2£©ÈôA£¬F£¬BÈýµãÔÚͬһÌõÖ±ÏßmÉÏ£¬ÇÒÔ­µãµ½Ö±ÏßmµÄ¾àÀëΪ2£¬ÇóÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸