精英家教网 > 高中数学 > 题目详情
1.如图,ABC-A'B'C'为三棱柱,M为CC的中点,N为AB的中点,AA'=2,AB=2,BC=1,∠ABC=60°.
(1)求证:CN∥平面AB'M;
(2)求平面AB'M与平面BB'C所成的锐二面角的余弦值.

分析 (1)取A′B′的中点E,连接EC′,EN,由已知可得AB′,EN共面,设AB′∩EN=F,连接FM,可得NF∥CM,NF=CM,从而得到CN∥FM,然后利用线面平行的判定可得CN∥平面AB'M;
(2)在三角形ABC中,由余弦定理可得AC2,由AC2+BC2=AB2,得AC⊥CB,建立如图所示空间直角坐标系,求出所用点的坐标,得到平面AB′M与平面BCC′B′的一个法向量,利用两法向量所成角的余弦值可得平面AB'M与平面BB'C所成的锐二面角的余弦值.

解答 (1)证明:如图,取A′B′的中点E,连接EC′,EN,
∵ABC-A′B′C′为直三棱柱,∴ABB′A′为矩形,则AB′,EN共面,
设AB′∩EN=F,连接FM,
则EN∥BB′∥CC′,且F为AB′的中点.
又∵M为CC′的中点,
∴NF∥CM,NF=CM,则CN∥FM,
而MF?平面AB'M,CN?平面AB'M,
∴CN∥平面AB'M;
(2)解:在三角形ABC中,由余弦定理可得:
AC2=AB2+BC2-2AB×BC×cosB=22+12-2×2×1×cos60°=3.
∴AC2+BC2=AB2,则AC⊥CB.
建立如图所示空间直角坐标系,
则C(0,0,0),A($\sqrt{3},0,0$),B′(0,1,2),M(0,0,1),
∴$\overrightarrow{AB′}=(-\sqrt{3},1,2)$,$\overrightarrow{AM}=(-\sqrt{3},0,1)$,
设平面AB′M的一个法向量为$\overrightarrow{m}=(x,y,z)$.
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB′}=-\sqrt{3}x+y+2z=0}\\{\overrightarrow{m}•\overrightarrow{AM}=-\sqrt{3}x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}=(1,-\sqrt{3},\sqrt{3})$.
∵AC⊥平面BCC′B′,∴可取平面BCC′B′的一个法向量$\overrightarrow{n}=(1,0,0)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}=\frac{1}{\sqrt{7}×1}=\frac{\sqrt{7}}{7}$
∴平面AB'M与平面BB'C所成的锐二面角的余弦值为$\frac{\sqrt{7}}{7}$.

点评 本题考查直线与平面平行的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
( I)求证:BD⊥平面ACFE;
( II)当直线FO与平面BDE所成的角为45°时,求二面角B-EF-D的余弦角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}是等差数列,数列{bn}是等比数列,其公比q>1,且b1>0,若a1=b1,a11=b11,则(  )
A.a6=b6B.a6>b6C.a6<b6D.a6<b6或a6>b6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数$\frac{2-i}{2+i}$的虚部为(  )
A.$-\frac{4}{5}i$B.$\frac{4}{5}i$C.$-\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数$f(x)=\sqrt{1-{x^2}}$的图象上某一点处的切线过点(2,1),则切线的斜率为(  )
A.0B.0或$\frac{4}{3}$C.$\frac{4}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x+y-3≥0\\ y≤4\end{array}\right.$,若存在x,y使得2x+y≤a成立,则a的取值范围是(  )
A.(2,+∞)B.[2,+∞)C.[4,+∞)D.[10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为考查某种疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:
  感染 未感染 总计
 没服用 20  50
 服用  40 
 总计   100
(1)请完成上面的列联表,并回答是否有97.5%的把握认为这种疫苗有效?并说明理由;
(2)利用分层抽样的方法在感染的动物中抽取6只,然后在所抽取的6只动物中任取2只,问至少有1只服用疫苗的概率是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数值:
 P(K2≥k0 0.05 0.025 0.010
 k0 3.841 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC,内角A,B,C所对的边分别为a,b,c,已知c2sinAcosA+a2sinCcosC=4sinB,$cosB=\frac{{\sqrt{7}}}{4}$,D是线段AC上一点,且${S_{△BCD}}=\frac{2}{3}$,则$\frac{AD}{AC}$=(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{2}{3}$D.$\frac{10}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,AB=6,AC=2,∠BAC=$\frac{2π}{3}$,若$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且3x+y=1,则|AM|的最小值为1.

查看答案和解析>>

同步练习册答案