精英家教网 > 高中数学 > 题目详情
13.为考查某种疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:
  感染 未感染 总计
 没服用 20  50
 服用  40 
 总计   100
(1)请完成上面的列联表,并回答是否有97.5%的把握认为这种疫苗有效?并说明理由;
(2)利用分层抽样的方法在感染的动物中抽取6只,然后在所抽取的6只动物中任取2只,问至少有1只服用疫苗的概率是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数值:
 P(K2≥k0 0.05 0.025 0.010
 k0 3.841 5.024 6.635

分析 (1)根据题意填写列联表,计算K2,对照临界值得出结论;
(2)利用分层抽样原理以及列举法计算基本事件数,求出对应的概率值.

解答 解:(1)根据题意,填写列联表如下:

  感染 未感染 总计
 没服用 2030  50
 服用 10 4050 
 总计 30 70 100
根据表中数据,计算K2=$\frac{100{×(20×40-10×30)}^{2}}{50×50×30×70}$=$\frac{100}{21}$≈4.76<5.024,
所以没有97.5%的把握认为这种疫苗有效;
(2)利用分层抽样法抽取的6只中有4只没服用疫苗,2只服用疫苗,
记4只没服用疫苗的为1,2,3,4,2只服用疫苗的为A、B;
从这6只中任取2只,基本事件是
12、13、14、1A、1B、23、24、2A、2B、34、3A、3B、4A、4B、AB共15种,
至少有1只服用疫苗的基本事件是1A、1B、2A、2B、3A、3B、4A、4B、AB共9种,
故所求的概率是$\frac{9}{15}$=$\frac{3}{5}$.

点评 本题考查了独立性检验和列举法求古典概型的概率问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)已知tan(π+α)=3,求(sinα+cosα)2+$\frac{4sinα-2cosα}{cosα+3sinα}$的值;
(2)已知cos($\frac{π}{6}$-θ)=a(|a|≤1),求cos($\frac{5π}{6}$+θ)和sin($\frac{2π}{3}$-θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,1),且离心率为$\frac{\sqrt{2}}{2}$,斜率为k的直线l与椭圆相交于P,Q两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线AP,AQ的斜率分别为k1,k2,且k1+k2=2,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABC-A'B'C'为三棱柱,M为CC的中点,N为AB的中点,AA'=2,AB=2,BC=1,∠ABC=60°.
(1)求证:CN∥平面AB'M;
(2)求平面AB'M与平面BB'C所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一组数据1,10,5,2,x,2,且2<x<5,若该数据的众数是中位数的$\frac{2}{3}$倍,则该数据的方差为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(4,3),且$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow{b}$),则实数t=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知锐角△ABC的外接圆O的半径为1,∠B=$\frac{π}{6}$,则$\overrightarrow{BA}•\overrightarrow{BC}$的取值范围为(3,$\frac{3}{2}+\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn满足Sn=$\frac{3}{2}{a_n}-\frac{1}{2}{a_1}({n∈{N^*}})$,且a1-1,2a2,a3+7成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=2log9an(n∈N*),求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=axex-(a-1)(x+1)2(a∈R,e为自然对数的底数,e=2.7181281…).
(1)当a=-1时,求f(x)的单调区间;
(2)若f(x)仅有一个极值点,求a的取值范围.

查看答案和解析>>

同步练习册答案