分析 (1)根据an=Sn-Sn-1可得出{an}的递推公式,于是{an}为等比数列,根据a1-1,2a2,a3+7成等差数列解方程计算a1即可得出an;
(2)计算bn=$\frac{1}{n}$,使用裂项法求和.
解答 解:(1)由${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}{a_1}$得2Sn=3an-a1,由$\left\{{\begin{array}{l}{2{S_n}=3{a_n}-{a_1}}\\{2{S_{n-1}}=3{a_{n-1}}-{a_1}(n≥2)}\end{array}}\right.$,做差得an=3an-1(n≥2),
∴数列{an}是公比为3的等比数列,
又a1-1,2a2,a3+7成等差数列,4a2=a1+a3+6,
即12a1=a1+9a1+6,解得a1=3,
∴${a_n}={3^n}$.
(2)bn=2log93n=n,∴$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}=\frac{n}{n+1}$.
点评 本题考查了等比数列的性质,裂项法求和,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | a6=b6 | B. | a6>b6 | C. | a6<b6 | D. | a6<b6或a6>b6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 感染 | 未感染 | 总计 | |
| 没服用 | 20 | 50 | |
| 服用 | 40 | ||
| 总计 | 100 |
| P(K2≥k0) | 0.05 | 0.025 | 0.010 |
| k0 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{10}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{4}$ | B. | $\frac{3}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com