精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和为Sn满足Sn=$\frac{3}{2}{a_n}-\frac{1}{2}{a_1}({n∈{N^*}})$,且a1-1,2a2,a3+7成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=2log9an(n∈N*),求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Tn

分析 (1)根据an=Sn-Sn-1可得出{an}的递推公式,于是{an}为等比数列,根据a1-1,2a2,a3+7成等差数列解方程计算a1即可得出an
(2)计算bn=$\frac{1}{n}$,使用裂项法求和.

解答 解:(1)由${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}{a_1}$得2Sn=3an-a1,由$\left\{{\begin{array}{l}{2{S_n}=3{a_n}-{a_1}}\\{2{S_{n-1}}=3{a_{n-1}}-{a_1}(n≥2)}\end{array}}\right.$,做差得an=3an-1(n≥2),
∴数列{an}是公比为3的等比数列,
又a1-1,2a2,a3+7成等差数列,4a2=a1+a3+6,
即12a1=a1+9a1+6,解得a1=3,
∴${a_n}={3^n}$.
(2)bn=2log93n=n,∴$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}=\frac{n}{n+1}$.

点评 本题考查了等比数列的性质,裂项法求和,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知数列{an}是等差数列,数列{bn}是等比数列,其公比q>1,且b1>0,若a1=b1,a11=b11,则(  )
A.a6=b6B.a6>b6C.a6<b6D.a6<b6或a6>b6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为考查某种疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:
  感染 未感染 总计
 没服用 20  50
 服用  40 
 总计   100
(1)请完成上面的列联表,并回答是否有97.5%的把握认为这种疫苗有效?并说明理由;
(2)利用分层抽样的方法在感染的动物中抽取6只,然后在所抽取的6只动物中任取2只,问至少有1只服用疫苗的概率是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数值:
 P(K2≥k0 0.05 0.025 0.010
 k0 3.841 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC,内角A,B,C所对的边分别为a,b,c,已知c2sinAcosA+a2sinCcosC=4sinB,$cosB=\frac{{\sqrt{7}}}{4}$,D是线段AC上一点,且${S_{△BCD}}=\frac{2}{3}$,则$\frac{AD}{AC}$=(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{2}{3}$D.$\frac{10}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆M是△ABC的外接圆,若圆M的半径为1,且$\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{AM}$,则$\overrightarrow{MB}•\overrightarrow{MC}$=(  )
A.$-\frac{{\sqrt{3}}}{4}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)是定义在R上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x-2018)3f(x-2018)+8f(-2)>0的解集是(2016,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,AB=6,AC=2,∠BAC=$\frac{2π}{3}$,若$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且3x+y=1,则|AM|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.(填“充分不必要、必要不充分、既不充分又不必要、充要”中的一个).

查看答案和解析>>

同步练习册答案