精英家教网 > 高中数学 > 题目详情
12.“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.(填“充分不必要、必要不充分、既不充分又不必要、充要”中的一个).

分析 函数f(x)=x3+ax2(x∈R)为奇函数?f(x)+f(-x)=x3+ax2+(-x)3+a(-x)2=0,化为ax2=0对于?x∈R都成立,即可得出a.

解答 解:函数f(x)=x3+ax2(x∈R)为奇函数?f(x)+f(-x)=x3+ax2+(-x)3+a(-x)2=0,化为ax2=0对于?x∈R都成立,∴a=0.
∴“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.
故答案为:充要.

点评 本题考查了函数的奇偶性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn满足Sn=$\frac{3}{2}{a_n}-\frac{1}{2}{a_1}({n∈{N^*}})$,且a1-1,2a2,a3+7成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=2log9an(n∈N*),求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=axex-(a-1)(x+1)2(a∈R,e为自然对数的底数,e=2.7181281…).
(1)当a=-1时,求f(x)的单调区间;
(2)若f(x)仅有一个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,以点(0,1)为圆心且与直线mx-y-2m-1=0(x∈R)相切的所有圆中,半径最大的圆的标准方程为x2+(y-1)2=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,将绘有函数$f(x)=\sqrt{3}sin({ωx+\frac{5π}{6}})({ω>0})$部分图象的纸片沿x轴折成直二面角,若AB之间的空间距离为$\sqrt{15}$,则f(-1)=(  )
A.-1B.1C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)是R上的奇函数,当x≤0时,f(x)=x2+(3a-1)x,若函数y=f(x)-|ex-1|有两个零点,则实数a的取值范围是$(0,\frac{2}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若a,b∈{0,1,2},则函数f(x)=ax2+2x+b有零点的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列三个结论:
①设回归直线方程为$\widehat{y}$=2-2.5x,当变量x增加1个单位时,y平均增加2个单位;
②若命题p:?x0∈[1,+∞),$x_0^2-{x_0}-1<0$,则¬p:?x∈(-∞,1),x2-x-1≥0;
③已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}=-3$;
其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一个焦点作垂直于长轴的弦,则此弦长为3.

查看答案和解析>>

同步练习册答案