精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=axex-(a-1)(x+1)2(a∈R,e为自然对数的底数,e=2.7181281…).
(1)当a=-1时,求f(x)的单调区间;
(2)若f(x)仅有一个极值点,求a的取值范围.

分析 (1)根据导数和函数的单调性的关系即可求出,
(2)先求导,再令f'(x)=0得到x=-1或aex-2a+2=0(*),根据aex-2a+2=0(*)无解即可求出a的范围.

解答 解:(1)由题知,f(x)=-xex+2(x+1)2
f'(x)=-ex-xex+4(x+1)=(x+1)(4-ex),
由f'(x)=0得到x=-1或x=ln4,
而当x<ln4时,(4-ex)>0,x>ln4时,(4-ex)<0,列表得:

x(-∞,-1)-1(-1,ln4)ln4(ln4,+∞)
f'(x)-0+0-
f(x)极大值极小值
所以,此时f(x)的减区间为(-∞,-1),(ln4,+∞),增区间为(-1,ln4);
(2)f'(x)=aex+axex-2(a-1)(x+1)=(x+1)(aex-2a+2),
由f'(x)=0得到x=-1或aex-2a+2=0(*)
由于f(x)仅有一个极值点,
关于x的方程(*)必无解,
①当a=0时,(*)无解,符合题意,
②当a≠0时,由(*)得ex=$\frac{2a-2}{a}$,故由 $\frac{2a-2}{a}$≤0得0<a≤1,
由于这两种情况都有,当x<-1时,f'(x)<0,于是f(x)为减函数,
当x>-1时,f'(x)>0,于是f(x)为增函数,
∴仅x=-1为f(x)的极值点,
综上可得a的取值范围是[0,1].

点评 本题考查了导数和函数的单调性和关系和一级函数的极值的问题,考查了分类讨论的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.为考查某种疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:
  感染 未感染 总计
 没服用 20  50
 服用  40 
 总计   100
(1)请完成上面的列联表,并回答是否有97.5%的把握认为这种疫苗有效?并说明理由;
(2)利用分层抽样的方法在感染的动物中抽取6只,然后在所抽取的6只动物中任取2只,问至少有1只服用疫苗的概率是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数值:
 P(K2≥k0 0.05 0.025 0.010
 k0 3.841 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,AB=6,AC=2,∠BAC=$\frac{2π}{3}$,若$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且3x+y=1,则|AM|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={1,2,3,4},集合B={3,4,5,6},集合C=A∩B,则集合C的真子集的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的导函数是f′(x),若f(x)=$\left\{\begin{array}{l}{xf′(-1)+1,x≥0}\\{ln(-x),x<0}\end{array}\right.$,则f(f(-e))=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在如图所示的锐角三角形空地中,有一内接矩形花园(阴影部分),其一边长为x(单位:m).将一颗豆子随机地扔到该空地内,用A表示事件:“豆子落在矩形花园内”,则P(A)的最大值为(  )
A.$\frac{1}{4}$B.$\frac{5}{12}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.(填“充分不必要、必要不充分、既不充分又不必要、充要”中的一个).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若变量x、y满足约束条件$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-2≤0\\ x-y≥0\end{array}\right.$,则$\frac{x+1}{x+y+1}$的最小值为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案