精英家教网 > 高中数学 > 题目详情
13.若变量x、y满足约束条件$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-2≤0\\ x-y≥0\end{array}\right.$,则$\frac{x+1}{x+y+1}$的最小值为$\frac{1}{3}$.

分析 首先画出可行域,化简目标函数,通过区域内的点与定点(-1,0)连接的直线的斜率解答即可.

解答 解:画出变量x、y满足约束条件$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-2≤0\\ x-y≥0\end{array}\right.$,的可行域如图:

目标函数$\frac{x+1}{x+y+1}$=$\frac{1}{1+\frac{y}{x+1}}$,$\frac{y}{x+1}$的几何意义是过区域内的点与定点(-1,0)
连接的直线的斜率,
斜率最大值时,则$\frac{x+1}{x+y+1}$取得最小值,
由其几何意义得到A与D(-1,0)连接的直线斜率最大,
所以最小值为$\frac{0+1}{0+2+1}$=$\frac{1}{3}$;
故答案为:$\frac{1}{3}$.

点评 本题考查了可行域的画法以及利用目标函数的几何意义求最值;本题解答的关键是明确目标函数的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=axex-(a-1)(x+1)2(a∈R,e为自然对数的底数,e=2.7181281…).
(1)当a=-1时,求f(x)的单调区间;
(2)若f(x)仅有一个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若a,b∈{0,1,2},则函数f(x)=ax2+2x+b有零点的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列三个结论:
①设回归直线方程为$\widehat{y}$=2-2.5x,当变量x增加1个单位时,y平均增加2个单位;
②若命题p:?x0∈[1,+∞),$x_0^2-{x_0}-1<0$,则¬p:?x∈(-∞,1),x2-x-1≥0;
③已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}=-3$;
其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知z=($\frac{1+i}{1-i}$)1902+($\frac{1-i}{1+i}$)2017,其中i为虚数单位,则复数z的共轭复数$\overline z$的虚部是(  )
A.1B.-iC.-1D.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}的各项为正数,且 9a32=a2a6,a3=2a2+9.
(1)求{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{an}的前n项和Sn是递增数列;p3:数列{$\frac{{a}_{n}}{n}$}是递增数列;p4:数列{an+nd}是递增数列.其中的真命题为(  )
A.p1,p2B.p3,p4C.p2,p3D.p1,p4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一个焦点作垂直于长轴的弦,则此弦长为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={2},B={x|ax-1=0,a∈R},若A∩B=B,则a=0或$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案