分析 (Ⅰ)由题意可知:b=1,根据椭圆的离心率公式,即可求得a的值,求得椭圆方程;
(Ⅱ)设直线l的方程,代入椭圆方程,利用韦达定理及直线的斜率公式求得k1+k2=$\frac{2k}{n+1}$=2,即可求得n=k-1,则直线l的方程y=k(x+1)-1,直线l恒过定点(-1,-1).
解答 解:(Ⅰ)由题意可知:b=1,椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$,
则a2=2,
∴椭圆的标准方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)证明:设直线l的方程y=kx+n,P(x1,y1),Q(x2,y2),
$\left\{\begin{array}{l}{y=kx+n}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:(1+2k2)x2+4knx+2n2-2=0,
∴△=(4kn)2-4(1+2k2)(2n2-2)>0,则2k2-n2+1>0,
x1+x2=-$\frac{2kn}{1+2{k}^{2}}$,x1x2=$\frac{2{n}^{2}-2}{1+2{k}^{2}}$,
由k1=$\frac{{y}_{1}-1}{{x}_{1}}$,k2=$\frac{{y}_{2}-1}{{x}_{2}}$,
∴k1+k2=$\frac{{x}_{2}({y}_{1}-1)+{x}_{1}({y}_{2}-1)}{{x}_{1}{x}_{2}}$=$\frac{{x}_{2}(k{x}_{1}+n-1)+{x}_{1}(k{x}_{2}+n-1)}{{x}_{1}{x}_{2}}$,
=$\frac{2k{x}_{1}{x}_{2}+(n-1)({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$,
=$\frac{2k×\frac{2{n}^{2}-2}{1+2{k}^{2}}-(n-1)×\frac{4kn}{1+2{k}^{2}}}{\frac{2{n}^{2}-2}{1+2{k}^{2}}}$,
=$\frac{2k(2{n}^{2}-2)-4kn(n-1)}{2{n}^{2}-2}$,
=$\frac{2k(n-1)}{{n}^{2}-1}$,
当n=1时,直线y=kx+1,过定点(0,1),不符合题意,
若n≠1时,则k1+k2=$\frac{2k}{n+1}$=2,则n=k-1,
直线l的方程y=k(x+1)-1,
则直线l恒过定点(-1,-1).
∴当k1+k2=2,证明直线l过定点(-1,-1).
点评 本题考查椭圆的标准方程及离心率公式,考查直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a6=b6 | B. | a6>b6 | C. | a6<b6 | D. | a6<b6或a6>b6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{5}i$ | B. | $\frac{4}{5}i$ | C. | $-\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 0或$\frac{4}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 感染 | 未感染 | 总计 | |
| 没服用 | 20 | 50 | |
| 服用 | 40 | ||
| 总计 | 100 |
| P(K2≥k0) | 0.05 | 0.025 | 0.010 |
| k0 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com