精英家教网 > 高中数学 > 题目详情
19.点$(2,\frac{π}{6})$的直角坐标是($\sqrt{3}$,1).

分析 直接利用极坐标与直角坐标的互化,求出结果即可.

解答 解:∵x=ρcosθ,y=ρsinθ,
∴点M的极坐标为(2,$\frac{π}{6}$),则该点的直角坐标为(2cos$\frac{π}{6}$,2sin$\frac{π}{6}$),
即($\sqrt{3}$,1),
故答案为:($\sqrt{3}$,1).

点评 本题考查了极坐标化为直角坐标的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.直线mx+ny=1与圆x2+y2=4的交点为整点(横纵坐标均为正数的点),这样的直线的条数是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,正方体ABCD-A1B1C1D1中,E,F,M,N分别是A1B1,BC,C1D1,B1C1的中点,求二面角M-EF-N的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设U=R,A={x|mx2+8mx+21>0},∁UA=∅,则m的取值范围是(  )
A.[0,$\frac{21}{16}$)B.{0}∪($\frac{21}{16}$,+∞)C.(-∞,0]D.(-∞,0]∪($\frac{21}{16}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.化简$\frac{1+sin4α-cos4α}{1+sin4α+cos4α}$的结果是(  )
A.$\frac{1}{tan2α}$B.tan 2αC.$\frac{1}{tanα}$D.tan α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,1),且离心率为$\frac{\sqrt{2}}{2}$,斜率为k的直线l与椭圆相交于P,Q两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线AP,AQ的斜率分别为k1,k2,且k1+k2=2,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知两条不同直线m,n,两个不同平面α,β,给出下列命题:
①若n∥α,则n平行于α内的所有直线;
②若m⊥α,n∥α,则m⊥n;
③若m?α,n?β且n⊥m,则α⊥β;
④若n?β,n⊥α,则α⊥β
其中正确命题的序号是(  )
A.①④B.②④C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一组数据1,10,5,2,x,2,且2<x<5,若该数据的众数是中位数的$\frac{2}{3}$倍,则该数据的方差为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(sinx-cosx)2-$\sqrt{3}$cos2x.
(1)求f(x)的最小正周期;
(2)求f(x)的单调区间.

查看答案和解析>>

同步练习册答案