分析 (1)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的周期性求得f(x)的最小正周期.
(2)利用正弦函数的单调性,求得f(x)的单调区间.
解答 解:(1)函数f(x)=(sinx-cosx)2-$\sqrt{3}$cos2x=1-sin2x-$\sqrt{3}$cos2x=1-2($\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x)=1-2sin(2x+$\frac{π}{3}$),
故f(x)的最小正周期为$\frac{2π}{2}$=π.
(2)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,可得函数f(x)的减区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,可得函数f(x)的增区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.
点评 本题主要考查三角恒等变换,正弦函数的周期性、单调性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x≤0} | B. | {x|0≤x<1} | C. | {x|-1<x<2} | D. | {x|-1≤x≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{4}$ | B. | $\frac{3}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com