分析 ( I)只需证明DB⊥AC,BD⊥AE,即可得BD⊥平面ACFE;
( II)取EF的中点为M,以O为坐标原点,以OA为x轴,以OB为y轴,以OM为z轴,建立空间直角坐标系,则$B(0,\sqrt{3},0)$,D(0,-$\sqrt{3}$,0),F(-1,0,h),E(1,0,2),则$\overrightarrow{DB}=(0,2\sqrt{3},0)$,$\overrightarrow{DE}=(1,\sqrt{3},2)$,利用向量法求解
解答
( I)证明:在菱形ABCD中,可得DB⊥AC,
又因为AE⊥平面ABCD,∴BD⊥AE,
且AE∩AC=A,BD⊥平面ACFE;
( II)解:取EF的中点为M,以O为坐标原点,以OA为x轴,以OB为y轴,以OM为z轴,建立空间直角坐标系,
则$B(0,\sqrt{3},0)$,D(0,-$\sqrt{3}$,0),F(-1,0,h),E(1,0,2),则$\overrightarrow{DB}=(0,2\sqrt{3},0)$,$\overrightarrow{DE}=(1,\sqrt{3},2)$,
设平面BDE的法向量$\overrightarrow{{n}_{1}}=(x,y,z)$,由$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{DB}=2\sqrt{3}y=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{DE}=x+\sqrt{3}y+2z=0}\end{array}\right.$,可取$\overrightarrow{{n}_{1}}=(2,0,1)$,
|cos$<\overrightarrow{{n}_{1}},\overrightarrow{OF}>$|=$\frac{2+h}{\sqrt{5}×\sqrt{1+{h}^{2}}}=\frac{\sqrt{2}}{2}$,⇒h=3,
故F(-1,0,3),$\overrightarrow{BE}=(1,-\sqrt{3},2)$,$\overrightarrow{BF}=(-1,-\sqrt{3},3)$,设平面BFE的法向量为$\overrightarrow{{n}_{2}}=(a,b,c)$,
由$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{BE}=a-\sqrt{3}b+2c=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{BF}=-a-\sqrt{3}b+3c=0}\end{array}\right.$,可取$\overrightarrow{{n}_{2}}=(-\sqrt{3},-5,-2\sqrt{3})$,
$\overrightarrow{DE}=(1,\sqrt{3},2),\overrightarrow{DF}=(-1,\sqrt{3},3)$,设平面DFE的法向量为$\overrightarrow{{n}_{3}}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{{n}_{3}}•\overrightarrow{DE}=x+\sqrt{3}y+2z=0}\\{\overrightarrow{{n}_{3}}•\overrightarrow{DF}=-x+\sqrt{3}y+3z=0}\end{array}\right.$,可取$\overrightarrow{{n}_{3}}=(\sqrt{3},-5,2\sqrt{3})$,
cos$<\overrightarrow{{n}_{2}},\overrightarrow{{n}_{3}}>$=$\frac{10}{2\sqrt{10}×2\sqrt{10}}=\frac{1}{4}$,
二面角B-EF-D的余弦值为$\frac{1}{4}$.
点评 本题考查了空间线面垂直的判定,向量法求二面角,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a=$\frac{1}{2}$,b=1 | B. | a=$\frac{1}{2}$,b=-1 | C. | a=-$\frac{1}{2}$,b=1 | D. | a=-$\frac{1}{2}$,b=-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1和2 | B. | 2和3 | C. | 3和4 | D. | 2和4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{9\sqrt{3}}}{2}$ | B. | $\frac{8}{3}$ | C. | $\frac{26}{9}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com