| A. | $\frac{{9\sqrt{3}}}{2}$ | B. | $\frac{8}{3}$ | C. | $\frac{26}{9}$ | D. | 3 |
分析 用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AE},\overrightarrow{AF}$,得出$\overrightarrow{AE}•\overrightarrow{AF}$关于bc的函数,利用基本不等式得出最小值.
解答
解:$\overrightarrow{AE}$=$\frac{2}{3}\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,$\overrightarrow{AF}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$,
∴$\overrightarrow{AE}•\overrightarrow{AF}$=$\frac{2}{9}{\overrightarrow{AB}}^{2}$+$\frac{2}{9}$${\overrightarrow{AC}}^{2}$+$\frac{5}{9}$$\overrightarrow{AB}•\overrightarrow{AC}$,
∵b+c=4,
∴b2+c2=16-2bc,$\frac{2}{9}{\overrightarrow{AB}}^{2}$+$\frac{2}{9}$${\overrightarrow{AC}}^{2}$=$\frac{2}{9}$(16-2bc),$\frac{5}{9}$$\overrightarrow{AB}•\overrightarrow{AC}$=$\frac{5}{9}$bccosA=$\frac{5}{18}$bc,
∴$\overrightarrow{AE}•\overrightarrow{AF}$=$\frac{2}{9}$(16-2bc)+$\frac{5bc}{18}$=$\frac{32}{9}$-$\frac{3}{18}$bc,
∵bc≤($\frac{b+c}{2}$)2=4,
∴当bc=4时,$\overrightarrow{AE}•\overrightarrow{AF}$取得最小值$\frac{32}{9}-\frac{3}{18}×4$=$\frac{26}{9}$.
故选:C.
点评 本题考查了平面向量的数量积运算,基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 0 | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 0或$\frac{4}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com