精英家教网 > 高中数学 > 题目详情
已知函数g(x)=
x
lnx
,f(x)=g(x)-ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(3)若存在x1,x2∈[e,e2],使f(x1)≤f(x2)+a,求实数a的取值范围.
(1)由
x>0
lnx≠0
得,x>0且x≠1,
则函数g(x)的定义域为(0,1)∪(1,+∞),
且g′(x)=
lnx-1
(lnx)2
,令g′(x)=0,即lnx-1=0,解得x=e,
当0<x<e且x≠1时,g′(x)<0;当x>e时,g′(x)>0,
∴函数g(x)的减区间是(0,1),(1,e),增区间是(e,+∞),
(2)由题意得函数f(x)=
x
lnx
-ax
在(1,+∞)上是减函数,
∴f′(x)=
lnx-1
(lnx)2
-a≤0在(1,+∞)上恒成立,
即当x∈(1,+∞)时,f(x)max≤0即可,
又∵f′(x)=
lnx-1
(lnx)2
-a=-(
1
lnx
)2+
1
lnx
-a
=-(
1
lnx
-
1
2
)
2
+
1
4
-a

∴当
1
lnx
=
1
2
时,即x=e2时,f(x)max=
1
4
-a

1
4
-a≤0
,得a≥
1
4
,故a的最小值为
1
4

(3)命题“若存在x1,x2∈[e,e2],使f(x1)≤f(x2)+a成立”等价于
“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,
由(2)得,当x∈[e,e2]时,f(x)max=
1
4
-a
,则f(x)max+a=
1
4

故问题等价于:“当x∈[e,e2]时,有f(x)min
1
4
”,
a≥
1
4
时,由(2)得,f(x)在[e,e2]上为减函数,
f(x)min=f(e2)=
e2
2
-ae2
1
4
,故a≥
1
2
-
1
4e2

a<
1
4
时,由于f′(x)=-(
1
lnx
-
1
2
)
2
+
1
4
-a
在[e,e2]上为增函数,
故f′(x)的值域为[f′(e),f′(e2)],即[-a,
1
4
-a
].
(i)若-a≥0,即a≤0,f′(x)≥0在[e,e2]恒成立,故f(x)在[e,e2]上为增函数,
于是,f(x)min=f(e)=e-ae≥e>
1
4
,不合题意.
(ii)若-a<0,即0<a<
1
4
,由f′(x)的单调性和值域知,
存在唯一x0∈(e,e2),使f′(x0)=0,且满足:
当x∈(e,x0)时,f′(x)<0,f(x)为减函数;当x∈(x0,e2)时,f′(x)<0,f(x)为增函数;
所以,f(x)min=f(x0)=
x0
lnx0
-ax0
1
4
,x∈(e,e2),
所以,a≥
1
lnx0
-
1
4x0
1
lne2
-
1
4e
1
2
-
1
4
=
1
4
,与0<a<
1
4
矛盾,不合题意.
综上,得a≥
1
2
-
1
4e2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且对于一切实数x满足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]时,f(x)=(x-2)2,求当x∈[16,20]时,函数g(x)=2x-f(x)的表达式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,记f(x)=0在区间[-1000,1000]上的根数为N,求N的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a>0),在区间[2,3]上有最大值4,最小值1,设函数f(x)=
g(x)
x

(1)求a、b的值; 
(2)当
1
2
≤x≤2
时,求函数f(x)的值域;
(3)若不等式f(2x)-k≥0在x∈[-1,1]上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)、g(x),下列说法正确的是(  )
A、f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数B、f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数C、f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数D、f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

科目:高中数学 来源:2011年高三数学一轮精品复习学案:2.1 函数及其表示(解析版) 题型:解答题

已知函数f(x)的定义域为R,且对于一切实数x满足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]时,f(x)=(x-2)2,求当x∈[16,20]时,函数g(x)=2x-f(x)的表达式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,记f(x)=0在区间[-1000,1000]上的根数为N,求N的最小值.

查看答案和解析>>

同步练习册答案