【题目】已知函数fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 设函数g(n)=
,若bn=g(2n+4),n∈N* , 则数列{bn}的前n(n≥2)项和Sn等于 .
【答案】2n+n﹣1
【解析】解:由函数g(n)=
, 可得bn=g(2n+4)=g(2n﹣1+2)=g(2n﹣2+1)=a
,
由函数fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,
可得﹣a1+a2﹣a3+…+an(﹣1)n=(﹣1)nn,①
n=1时,﹣a1=﹣1,可得a1=1;
n≥2时,﹣a1+a2﹣a3+…+an﹣1(﹣1)n﹣1=(﹣1)n﹣1(n﹣1),②
①﹣②可得an(﹣1)n=(﹣1)nn﹣(﹣1)n﹣1(n﹣1),
化简可得an=2n﹣1,对n=1也成立.
则bn=a
=2n﹣1+1,
则数列{bn}的前n(n≥2)项和Sn等于(1+2+4+…+2n﹣1)+n
=
+n=2n+n﹣1.
所以答案是:2n+n﹣1.
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系
.
科目:高中数学 来源: 题型:
【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn= ![]()
(1)求证:数列{
}为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,直线l的参数方程为
,若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos2θ+4cosθ=ρ(ρ≥0,0≤θ≤2π).
(Ⅰ)当
时,求直线l的普通方程;
(Ⅱ)若直线l与曲线C相交A,B两点.求证:
是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(2cosx,sinx),
=(cosx,2
cosx),函数f(x)=
﹣1.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在锐角△ABC中,内角A、B、C的对边分别为a,b,c,tanB=
,对任意满足条件的A,求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.?x0∈R,sinx0+cosx0= ![]()
B.?x≥0且x∈R,2x>x2
C.已知a,b为实数,则a>2,b>2是ab>4的充分条件
D.已知a,b为实数,则a+b=0的充要条件是
=﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金
,第2关收税金为剩余金的
,第3关收税金为剩余金的
,第4关收税金为剩余金的
,第5关收税金为剩余金的
,5关所收税金之和,恰好重1斤,问原来持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原来持金多少?”改成假设这个原来持金为x,按此规律通过第8关,则第8关需收税金为x.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在棱长为a的正方体ABCD﹣A1B2C3D4中,点E,F分别在棱AD,BC上,且AE=BF=
a.过EF的平面绕EF旋转,与DD1、CC1的延长线分别交于G,H点,与A1D1、B1C1分别交于E1 , F1点.当异面直线FF1与DD1所成的角的正切值为
时,|GF1|=( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费. ![]()
(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;
(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;
(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com