精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c在x=-
2
3
与x=1时都取得极值.
(1)求a,b的值与函数f(x)的单调递减区间;
(2)若f(0)=1,且x∈[-1,2],求函数f(x)的最值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(1)求f′(x),根据极值的概念,容易建立关于a,b的方程组,解方程组即得a,b的值,这时候就可以求f′(x)了,根据f′(x)的符号即可找到函数f(x)的单调递减区间.
(2)根据条件可求出c,根据(1)可以知道函数f(x)在[-1,2]上导数f′(x)的符号,根据极值的定义可求出f(x)在[-1,2]上的极值,并求出端点值从而根据最值的概念求出函数f(x)在[-1,2]上的最值.
解答: 解:f′(x)=3x2+2ax+b;
f′(-
2
3
)=
4
3
-
4
3
a+b=0
f′(1)=3+2a+b=0
,解得a=-
1
2
,b=-2

(1)f′(x)=3x2-x-2=(x-1)(3x+2);
∴x∈(-2,1)时,f′(x)<0,∴[-2,1]是函数f(x)单调递减区间;
(2)f(0)=c=1;
∴f(x)=x3-
1
2
x2-2x+1
,由(1)知:x∈[-1,1)时,f′(x)<0;x∈(1,2]时,f′(x)>0;
∴f(1)=-
1
2
是函数f(x)的极小值,又f(-1)=
3
2
,f(2)=3;
∴函数f(x)的最小值是-
1
2
,最大值是3.
点评:考查极值的概念,在极值点处的导数情况,根据导数符号判断函数的单调性,找函数的单调区间,以及求闭区间上函数最值的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为(  )
A、(x+1)2+(y+1)2=2
B、(x-1)2+(y-1)2=2
C、(x+1)2+(y+1)2=8
D、(x-1)2+(y-1)2=8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P:2≤m≤8,Q:函数f(x)=x3+mx2+(m+6)x+1存在极大值和极小值,求使“P∩¬Q”为真命题的m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n∈N*
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列;
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn
(3)记bn=log (2an+1)Tn,数列{bn}的前n项和为Sn,求Sn>2013的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知命题p:方程x2-(2+a)x+2a=0在[-1,1]上有且仅有一解;命题q:存在实数x使不等式
x2+2ax+2a≤0成立.若命题“p∧q”是真命题,求a的取值范围.
(2)已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,求两方程的根都是整数的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数fn(x)=(1+x)n-1,(x>-2,n∈N*),其导函数记为fn′(x).
(1)求证:fn(x)≥nx;
(2)设
fn′(x0)
fn+1′(x0)
=
fn(1)
fn+1(1)
,求证:0<x0<1;
(3)是否存在区间[a,b]⊆(-∞,0],使函数h(x)=f3(x)-f2(x)在区间[a,b]上的值域为[ka,kb]?若存在,求出最小的k值及相应的区间[a,b].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+Inx.
(Ⅰ)当a=1时,求f(x)在[
1
2
,2]上的最值;
(Ⅱ)当1<x<2时,求证(x+1)Inx>2(x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-x2-3,g(x)=
a
x
+xlnx,其中a∈R.
(1)若存在x1,x2∈[0,2],使得f(x1)-f(x2)≥M,求整数M的最大值;
(2)若对任意的s,t∈[
1
2
,2],都有f(t)≤g(s),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+mx2(m∈R).
(1)求函数f(x)的单调区间;
(2)若A,B是函数f(x)图象上不同的两点,且直线AB的斜率恒大于1,求实数m的取值范围.

查看答案和解析>>

同步练习册答案