精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3-x2-3,g(x)=
a
x
+xlnx,其中a∈R.
(1)若存在x1,x2∈[0,2],使得f(x1)-f(x2)≥M,求整数M的最大值;
(2)若对任意的s,t∈[
1
2
,2],都有f(t)≤g(s),求a的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:导数的概念及应用
分析:(1)f′(x)=3x(x-
2
3
),x∈[0,2]
,令f'(x)=0,得x1=0,x2=
2
3
,列表讨论能求出整数M的最大值.
(2)由(1)知,在[
1
2
,2]
上,[f(x)]max=f(2)=1,要满足对任意的s,t∈[
1
2
,2]
,都有f(t)≤g(s),只需g(x)≥1在[
1
2
,2]
上恒成立,由此能求出a的取值范围.
解答: 解:(1)f′(x)=3x(x-
2
3
),x∈[0,2]
,令f'(x)=0得x1=0,x2=
2
3
,…(2分)
当x变化时,f'(x)和f(x)的变化情况如下:
x0(0,
2
3
)
2
3
(
2
3
,2)
2
f'(x)-0+
f(x)-3单调递减极小值单调递增1
可得,[f(x)]max=1,[f(x)]min=f(
2
3
)=-
85
27
.…(5分)
要使存在x1,x2∈[0,2],使得f(x1)-f(x2)≥M,只需M≤[f(x)]max-[f(x)]min=
112
27
,故整数M的最大值为4.…(7分)
(2)由(1)知,在[
1
2
,2]
上,[f(x)]max=f(2)=1,要满足对任意的s,t∈[
1
2
,2]
,都有f(t)≤g(s),只需g(x)≥1在[
1
2
,2]
上恒成立,…(9分)
a
x
+xlnx≥1
[
1
2
,2]
上恒成立,分离参数可得:a≥x-x2lnx,
令h(x)=x-x2lnx,h'(x)=1-x-2xlnx,可知,当x∈[
1
2
,1),h′(x)>0,h(x)
单调递增,当x∈(1,2],h'(x)<0,h(x)单调递减,…(12分)
所以h(x)在x=1处取得最大值h(1)=1,
所以a的取值范围是a≥1.…(13分)
点评:本题主要考查最值的概念、利用导数研究函数的单调性等基础知识,同时考查推理论证能力,分类讨论等综合解题能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图程序中,要使输入的X和输出的Y值相等,则满足条件的X的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c在x=-
2
3
与x=1时都取得极值.
(1)求a,b的值与函数f(x)的单调递减区间;
(2)若f(0)=1,且x∈[-1,2],求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2-2ax+2)ex,其中a>0.
(1)讨论f(x)的单调性;
(2)设a=2.
①求y=f(x)在点M(0,f(0))处的切线方程;
②若y=f(x)的图象在区间[-2,2]上与直线y=m有三个不同的交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出不等式组
x-y+5≥0
x+y≥0
x≤3
表示的平面区域,并回答下列问题:
(1)指出x,y的取值范围;
(2)平面区域内有多少个整点?

查看答案和解析>>

科目:高中数学 来源: 题型:

央视传媒为了解央视举办的“中国汉字听写大会”节目的收视情况,随机抽取了某市50名电视观众进行调查,下面是根据调查结果绘制的观众日均收看该节目时间的频率分布直方图.将收看“中国汉字听写大会”日均时间不低于30分钟的观众称为“汉语关注者”.
(I)估计该市电视观众观看“中国汉字听写大会”的日均时间的平均数(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%以上的把握认为“汉语关注者”与“是否为教育工作者”有关;
非汉语关注者汉语关注者合  计
教育工作者6
非教育工作者30
合  计22
(Ⅲ)从已抽取的50名电视观众中再随机抽取3人,记被抽取的3人中“汉语关注者”的人数为随机变量X,求P(X≥2)的值.
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.10 0.050 0.025 0.010 0.005 0.001
 k 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx+
1
2
x2,g(x)=3x+b-1.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)设F(x)=f(x)-g(x),
(ⅰ)求函数y=F(x)的单调区间;
(ⅱ)若方程F(x)=0有3个不同的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两数列{an}、{bn}分别满足an+1=an+2n,bn+1=bn+2(n∈N*),且a1=b1=2.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2xsinθ-1,x∈[-
3
2
1
2
]

(1)若θ=
π
6
,求f(x)的最大值和最小值.
(2)若f(x)在[-
3
2
1
2
]
上是单调函数,且θ∈[0,2π),求θ的取值范围.

查看答案和解析>>

同步练习册答案