精英家教网 > 高中数学 > 题目详情
18.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若b=2,B=$\frac{π}{3}$且sin2A+sin(A+C)=sinB,则△ABC的面积为$\frac{2\sqrt{3}}{3}$.

分析 由已知化简可得sin2A=0,即A=90°,从而可求C,由正弦定理可得c,利用三角形面积公式即可得解.

解答 解:∵锐角△ABC中,sin2A+sin(A+C)=sinB,
∴2sinAcosA=sin(A+C)-sin(A+C),
∴sin2A=0,即A=90°.
再由b=2,B=$\frac{π}{3}$ 可得C=$\frac{π}{6}$,
故由正弦定理可得:c=$\frac{bsinC}{sinB}$=$\frac{2×sin\frac{π}{6}}{sin\frac{π}{3}}$=$\frac{2\sqrt{3}}{3}$
∴△ABC的面积为:$\frac{1}{2}$×2×$\frac{2\sqrt{3}}{3}$=$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.

点评 本题主要考查了正弦定理,三角形面积公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.一个水池装有甲,乙两个进水管和丙一个出水管,若打开甲水管4小时,乙水管2小时和丙水管2小时,则水池中余水5吨;若打开甲水管2小时,乙水管3小时,丙水管1小时,则水池中余水4吨,问打开加水管8小时,乙水管8小时,丙水管4小时,池中余水多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若在区间(0,m]上恰有一个实数a使函数f(x)=x4-ax2-1有整数零点,则实数m的取值范围是[$\frac{15}{4}$,$\frac{80}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.f(x)=x3+ax2+bx+c在区间(1,2)上有三个零点,则(  )
A.f(1)f(2)≤$\frac{1}{64}$B.f(1)f(2)<$\frac{1}{64}$C.f(1)f(2)>-$\frac{1}{64}$D.f(1)f(2)≥-$\frac{1}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在长方体ABCD-A1B1C1D1中,已知AB=AA1=a,BC=$\sqrt{2}$a,M是AD的中点.
(1)求证:AD∥平面A1BC;
(2)求证:平面A1MC⊥平面A1BD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=log2(1-3x)的定义域是(  )
A.(0,+∞)B.[0,+∞)C.(-∞,0)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln(1+x)-mx
(1)求函数f(x)的极值;
(2)求证:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+(n+1)}$>ln2(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|x2-5x+4≤0}与集合B={x|x2-2ax+a+2≤0,a∈R},若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)的定义域为D,若函数f(x)的导函数f′(x)存在且连续且x0为y=f′(x)的极值点;则称点(x0,f(x0))是函数f(x)的拐点.则下列结论中正确的序号是①③.
①函数y=sinx的拐点为(kπ,0),k∈Z;
②函数f(x)=ex-$\frac{1}{12}{x^4}$有且仅有两个拐点;
③若函数f(x)=4xlnx+$\frac{1}{6}{x^3}+\frac{a+1}{2}{x^2}$有两个拐点,则a<-5;
④函数f(x)=xex的拐点为(x0,f(x0)),则存
在正数ε使f(x)在区间(x0-ε,x0)和区间(x0,x0+ε)上的增减性相反.

查看答案和解析>>

同步练习册答案