精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ln(1+x)-mx
(1)求函数f(x)的极值;
(2)求证:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+(n+1)}$>ln2(n∈N*

分析 (1)由于函数f(x)=ln(1+x)-mx的导函数含参数m,故需对m分类讨论,得到当m≤0时,f′(x)=$\frac{1}{1+x}$-m>0,此时f(x)没有极值;当m>0时,解不等式f′(x)>0与f′(x)<0,即可得到函数的单调区间,进而得到函数f(x)的极值.
(2)由(1)知m=1时,f(x)在(0,+∞)上单调递减,所以f(x)<f(0),即ln(1+x)<x(x>0),得到$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+(n+1)}$>ln(1+$\frac{1}{n+1}$)+ln(1+$\frac{1}{n+2}$)+…+ln(1+$\frac{1}{n+(n+1)}$),整理上式,即可得证.

解答 解:∵f(x)=ln(1+x)-mx,(x>-1)
∴f′(x)=$\frac{1}{1+x}$-m,(x>-1)
(1)①当m≤0时,f′(x)>0,则f(x)为(-1,+∞)上的增函数,∴f(x)没有极值;
②当m>0时,由f′(x)>0得-1<x<$\frac{1}{m}$-1;由f′(x)<0得x>$\frac{1}{m}$-1.
则函数f(x)在(-1,$\frac{1}{m}$-1)上单调递增,在($\frac{1}{m}$-1,+∞)上单调递减.
故当x=$\frac{1}{m}$-1时,f(x)有极大值,但无极小值.
综上可知,当m≤0时,f(x)没有极值;
当m>0时,当x=$\frac{1}{m}$-1时,f(x)有极大值,但无极小值.
(2)由(1)知m=1时,f(x)在(0,+∞)上单调递减
∴f(x)<f(0),即ln(1+x)<x(x>0),
令x=$\frac{1}{k+1}$,得ln(1+$\frac{1}{1+k}$)<$\frac{1}{1+k}$,
∴$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+(n+1)}$
>ln(1+$\frac{1}{n+1}$)+ln(1+$\frac{1}{n+2}$)+…+ln(1+$\frac{1}{n+(n+1)}$)
=ln($\frac{n+2}{n+1}$)+ln($\frac{n+3}{n+2}$)+…+ln($\frac{n+n+1+1}{n+(n+1)}$)
=ln$\frac{2n+2}{n+1}$=ln2.
∴$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+(n+1)}$>ln2(n∈N*)>ln2.

点评 本题主要考查利用导数研究函数的极值与函数的单调性,在研究函数的性质时要注意函数的定义域,并且利用函数的单调性证明不等式,这是高考考查的重点也是学生学习的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若正方形的棱长为2$\sqrt{2}$,则以该正方形各个面的中心为顶点的凸多面体的体积为(  )
A.$\frac{\sqrt{2}}{6}$B.$\frac{8\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若函数y=|x-a|在区间(-∞,4]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若b=2,B=$\frac{π}{3}$且sin2A+sin(A+C)=sinB,则△ABC的面积为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知一个等差数列{an}的前10项的和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n项和的公式吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2013年前,我国每年浪费约500亿公斤粮食,接近全国粮食总产量的十分之一,成为了世界上最大的人为灾害.从2013年1月初开始,公众自主发起一项倡议市民厉行节约,反对浪费,在饭店就餐时适量点餐,剩餐打包,“光盘”离开的大型公益活动:“光盘行动”.为了了解活动效果,某新闻媒体对900名市民进行了网上调查,所有参与调查的市民中,持“支持”“保留”和“不支持”态度的人数如下表所示:
支持保留不支持
450300150
(Ⅰ)在持“支持”、“保留”、“不支持”态度的市民中,用分层抽样的方法抽取6个人进行电话采访,应分别抽多少人?
(Ⅱ)将(1)中抽出的6个人看成一个总体,从这6个人中任意选取3人开一个座谈会,求这3人中至少有1人持“保留”态度的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{1}{3}$x3-4x+4在区间[1,3]上的最大最小值为(  )
A.4,-$\frac{4}{3}$B.4,1C.$\frac{1}{3}$,-$\frac{4}{3}$D.1,-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球的次数为随机变量ξ,则ξ的可能值为(  )
A.1,2,…,6B.1,2,…,7C.1,2,…,11D.1,2,3…

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.正方体的八个顶点中有四个恰好为正四面体的顶点,则正方体与正四面体的表面积的比值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案