精英家教网 > 高中数学 > 题目详情
已知a∈R,函数f(x)=x2|x-a|.
(1)当a=2时,求使f(x)=x成立的x的集合;
(2)求函数y=f(x)在区间[1,2]上的最小值.
(Ⅰ)由题意,f(x)=x2|x-2|
当x<2时,由f(x)=x2(2-x)=x,解得x=0或x=1;
当x≥2时,由f(x)=x2(x-2)=x,解得x=1+
2

综上,所求解集为{0,1,1+
2
}
(Ⅱ)设此最小值为m.
①当a≤1时,在区间[1,2]上,f(x)=x3-ax2
∵f′(x)=3x2-2ax=3x(x-
2
3
a)>0,x∈(1,2),
则f(x)是区间[1,2]上的增函数,∴m=f(1)=1-a.
②当1<a≤2时,在区间[1,2]上,f(x)=x2|x-a|≥0,由f(a)=0知m=f(a)=0.
③当a>2时,在区间[1,2]上,f(x)=ax2-x3
f′(x)=2ax-3x2=3x(
2
3
a-x).
若a≥3,在区间(1,2)上,f'(x)>0,则f(x)是区间[1,2]上的增函数,
∴m=f(1)=a-1.
若2<a<3,则1<
2
3
a<2.
当1<x<
2
3
a时,f'(x)>0,则f(x)是区间[1,
2
3
a]上的增函数,
2
3
a<x<2时,f'(x)<0,则f(x)是区间[
2
3
a,2]上的减函数,
因此当2<a<3时,故m=f(1)=a-1或m=f(2)=4(a-2).
当2<a≤
7
3
时,4(a-2)≤a-1,故m=f(2)=4(a-2),
7
3
<a<3时,4(a-2)<a-1,故m=f(1)=a-1.
总上所述,所求函数的最小值m=
1-a,a≤1
0,1<a≤2
4(a-2),2<a≤
7
3
a-1,a>
7
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函数g(x)=f′(x)是偶函数,求f(x)的极大值和极小值;
(Ⅱ)如果函数f(x)是(-∞,?+∞)上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=ln(x+1)-x2+ax+2.
(1)若函数f(x)在[1,+∞)上为减函数,求实数a的取值范围;
(2)令a=-1,b∈R,已知函数g(x)=b+2bx-x2.若对任意x1∈(-1,+∞),总存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e为自然对数的底).
(1)当a>0时,求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知a∈R,函数 f(x)=x3+ax2+(a-3)x的导函数是偶函数,则曲线y=f(x)在原点处的切线方程为
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

同步练习册答案